USING DERIVE

1. CURVE SKETCHING

Label all points on the graph

2. ABSOLUTE VALUE FUNCTION

Derive 5 Edie Insert Author simplify Solve ভalculus Declare Options window Help -lan	
Frumgebra 2 - - [\|]	Falgebra 1 - - [a\|x
\#1 : $f(x):=x^{2}-4$	For the absolute value, type: $f(x):=a b s\left(x^{\wedge} 2-4\right) \quad[\text { Enter }]$ \#1: $\quad f(x):=\left\|x^{2}-4\right\|$ The absolute value function reflects the negative values of $f(x)$ in the \mathbf{x}-axis.
$\underline{\approx} \approx \not \approx \mathrm{f}(\mathrm{x}):=\operatorname{ABS}\left(\mathrm{x}^{\wedge} 2-4\right)$	

USING DERIVE

3. TRIGONOMETRY

(a) Solving Trig equations in either radians or degrees

USING DERIVE

(b) Simplifying \& Expanding Trig expressions (Double angle formulas)

4 Derive 5	- ${ }^{\text {d }}$	
Fmalgebra 1 -	[-Mlagra2 trigrdiw	
```EXPANDING & COLLECTING (simplifying) Set DERIVE to either EXPAND or COLHECT terms in a trig expression DECLARE > Simplification Settings Select the setting in "TRIGONOMETRY"```	Example 1. Expand   (a) $\cos 2 \theta$   (b) $\sin (x+y)$   STEP 1:DECLARE >Simplification >Trig >Expand   \#1: Trigonometry : = Expand   $\operatorname{STEP} 2: \cos (2 \theta)[$ Enter $][=] . \sin (x+y)[$ Enter $][=]$   \#2: $\quad \cos (2 \cdot \theta)$	
	```\(2 \cdot \cos (\theta)^{2}-1\) \(\operatorname{SIN}(x+y)\) \(\cos (x) \cdot \sin (y)+\sin (x) \cdot \cos (y)\) Example 2, Simplify (collect) \\ (a) \(2 \cos \theta \sin \theta\) \\ (b) \(\cos x \cos y-\sin x \sin y\) \\ STEP 1:DECLARE >Simplification >Trig >Collect \\ \#6: Trigonometry : = Collect \\ STEP 2: \(2 \cos (\theta) \sin (\theta)[\) Enter \(][=]\). etc. \\ \#7: \(\quad 2 \cdot \cos (\theta) \cdot \sin (\theta)\) \\ \#8: \(\sin (2 \cdot \theta)\) \\ \#9: \(\quad \cos (x) \cdot \cos (y)-\sin (x) \cdot \sin (y)\) \\ \#10: \(\quad \cos (x+y)\)```	
Press F1 for Help		
$\\| \vee=\cong \approx \approx$ 「		

USING DERIVE

4. Exponentials

NOTE: $e^{-2 x}$ is entered as $\hat{e}^{\wedge}(-2 x)$ in DERIVE
(a) Simplifying

Example: Simplify $\frac{6^{2-x} \times 2^{x}}{3^{1-x}}$
(b) Solving indicial equations

Example: Solve to 3 decimal places
$4 e^{x}+6 e^{-x}-11=0$
Derive 5
\int File Edit Insert Author Simplify Solve Calculus Declare Options Window Help

\#2:
12
The expression simplifies to 12

SOLVING INDICIAL EQUATIONS
Example: Solve to 3 decimal places
$4 e^{x}+6 e^{-x}-11=0$
Step 1: $4 \hat{e}^{\wedge}(x)+6 \hat{e}^{\wedge}(-x)-11=0$ [Enter]
\#1: $\quad 4 \cdot \hat{e}^{x}+6 \cdot \hat{e}^{-x}-11=0$
Step 2: SOLVE >Expression (Algebraic, Real)
\#2: $\operatorname{SOLUE}\left(4 \cdot \hat{e}^{x}+6 \cdot \hat{e}^{-x}-11=0, x\right.$, Real $)$
\#3: $\quad x=\operatorname{LN}\left[\frac{3}{4}\right] \vee x=\operatorname{LN}(2)$
To get an approx. answer, click [[]
\#4: $\quad x=-0.2876820724 \vee x=0.6931471805$
Answer: $\mathbf{x}=-0.288$ or $\mathbf{x}=0.693$

USING DERIVE

5. Logarithms

NOTE: $\quad \log _{3} x$ is entered as $\log (x, 3)$ in DERIVE $\log _{e} x$ is entered as $\ln (x)$ in DERIVE, or as $\log (x, \hat{e})$

(a) Simplifying

Example: Simplify
$\log _{4}(x-2)^{3}-\log _{4}(x-2)$

(b) Solving log equations

Example: Solve
$\log _{e}(x+1)-\log _{e}(2 x-1)=\log _{e} 5$

USING DERIVE

6. Inverse functions

- Find the inverse function of $g(x)=-\sqrt{(x+3)}$.

Restricted Domain

Example:

- Find the inverse function of $f(x)=x^{2}-1$, domain $x \geq 0$
- Draw graphs of $f(x), f^{-1}(x)$ and $y=x$, on the same set of axes

USING DERIVE

7. Tangents \& Normals

Method 1: Using $\quad y-y_{1}=\boldsymbol{m}\left(x-x_{1}\right)$

EXAMPLE
Find the equations of the tangent and normal to $f(x)=0.2 x^{2}-4$ at $x=1$

Method 2: Using TANGENT(f(x),x,1) and PERPENDICULAR(f(x),x,1)

Find the equations of the tangent and normal to $f(x)=0.2 x^{2}-4$ at $x=1$

USING DERIVE

NOTE: The equation of the tangent must NOT be written as: $0.4 x-4.2$.
The equation MUST be written as: $y=0.4 x-4.2$

USING DERIVE

8. Integration

(a) Indefinite integral

Find $\int\left(\frac{1}{x}+3 \cos \frac{x}{2}\right) d x$
(b) Definite integral

Evaluate $\int_{1}^{\pi}\left(\frac{1}{x}+3 \cos \frac{x}{2}\right) d x$

Further Notes on Indefinite Integral

(1) \#3 (left window) gives the exact answer to $\int\left(\frac{1}{x}+3 \cos \frac{x}{2}\right) d x=\log _{e} x+6 \sin (x / 2)+c$
(2) You can set the "constant of integration" as $c, 0$, or any other value.

Further Notes on Definite Integral

(3) \#3 (right window) gives the exact answer to $\int_{1}^{\pi}\left(\frac{1}{x}+3 \cos \frac{x}{2}\right) d x=\log _{e} \pi+6 \sin (1 / 2)+6$.
(4) To obtain a rational (decimal) approximation, highlight \#3 and click [$\approx]$.

USING DERIVE

USING DERIVE : 9. Signed region

(a) Draw the graph of the region bounded by $f(x)=x^{3}+2 x^{2}-x-2$ and the x-axis.

$\\| \vee=\approx \approx \ldots$	

(b) Area of signed region

Find the area of the region bounded by $f(x)=x^{3}+2 x^{2}-x-2$ and the x-axis.
NOTE: From the graph, Area $=\int_{-2}^{-1} f(x) d x-\int_{-1}^{1} f(x) d x$

USING DERIVE

(c)Area between two curves

NOTE: Area $=\int_{a}^{b}[f(x)-g(x)] d x$, if $f(x)>g(x)$ in the interval $[\mathrm{a}, \mathrm{b}]$

Example

Find the area of the region bounded by $f(x)=x+1$ and $g(x)=x^{2}-1$.
(i) Find the points of intersection (From \#4 below, $x=-1, x=2$)

(ii) Find the area

USING DERIVE

USING DERIVE
 10. Binomial Distribution

- Binomial coefficients, ${ }^{n} C_{x}$, evaluated in DERIVE with " comb($\left.n, x\right)$
- $\operatorname{Pr}(X=x)={ }^{n} C_{x} p^{x}(1-p)^{n-x}$, evaluated in DERIVE with " binomial_density(x,n,p) "
- $\operatorname{Pr}(X \leq a)$, evaluated in DERIVE with $\sum_{x=0}^{a}$ binomial_density (x, n, p)
- $\operatorname{Pr}(X \geq a)$ evaluated in DERIVE with $\sum_{x=a}^{n}$ binomial_density (x, n, p)
- $\operatorname{Pr}(a \leq X \leq b)$ evaluated in DERIVE with $\sum_{x=a}^{b}$ binomial_density (x, n, p)

Example:

Jo rolls a die 4 times ($\mathbf{n}=4$). She defines "success" as rolling an even number $(\mathbf{p}=\mathbf{0 . 5})$. The random variable, X , denotes "rolling an even number".
(a) What is the probability of rolling exactly 2 even numbers $(\operatorname{Pr}(X=2))$?
(b) What is the probability of rolling no more than 2 even numbers $(\operatorname{Pr}(\mathrm{X} \leq 2))$?
(c) What is the probability of rolling at least 3 even numbers $(\operatorname{Pr}(X \geq 3))$
(d) What is the probability of rolling between 1 and 3 even numbers $(\operatorname{Pr}(1 \leq X \leq 3))$

```
Algebra 1 Binomial.dfw
Jo rolls a die 4 times (n=4). "Success" is rolling an even number (p=0.5).
(a)What is the probability of rolling exactly 2 even numbers ( }\operatorname{Pr}(\mathbf{X}=\mathbf{2})\mathrm{ )?
#1: BINOMIAL_DENSITY(2, 4, 0.5)
#2: 0.375
(b)What is the probability of rolling no more than 2 even numbers }\operatorname{Pr}(X\leq2
#3: BINOMIAL_DENSITY(x, 4, 0.5)
With #3 highlighted, click' 'S'button.
Enter 'Lower limit'=0, 'Upper limit'=2
#4:
    \sum=0
#5:
0.6875
(c)What is the probability of rolling at least 3 even numbers ( }\operatorname{Pr}(X\geq3)
Copy and paste #4, but change the limits to " }\textrm{x},3,4\mathrm{ "
#6: }\mp@subsup{\sum}{x=3}{4}\mathrm{ BINOMIAL_DENSITY(x, 4, 0.5)
#7:
    0.3125
    What is the probability of rolling between 1 and 3 even numbers ( }\operatorname{Pr}(1\leqX\leq3
    Copy and paste #4, but change the limits to " x,1,3"
#8:
    \mp@subsup{\sum}{=1}{3}
#9:
0 . 8 7 5
```


USING DERIVE

USING DERIVE

11. Hypergeometric Distribution

- Binomial coefficients, ${ }^{n} C_{x}=\binom{n}{x}$, evaluated in DERIVE with " $\operatorname{comb}(n, x)$
$\operatorname{Pr}(X=x)=\frac{\binom{D}{x} \cdot\binom{N-D}{n-x}}{\binom{N}{n}}$, evaluated in DERIVE with hypergeometric_density(x,n,D,N)
- $\operatorname{Pr}(X \leq a)$, evaluated in DERIVE with $\sum_{x=0}^{a}$ hypergeometric_density (x, n, D, N)
- $\operatorname{Pr}(X \geq a)$ evaluated in DERIVE with $\sum_{x=a}^{n}$ hypergeometric_density (x, n, D, N)
- $\operatorname{Pr}(a \leq X \leq b)$ evaluated in DERIVE with $\sum_{x=a}^{b}$ hypergeometric_density (x, n, D, N)

Example:

Eggs are sold in cartons of $12(\mathbf{N}=\mathbf{1 2})$. A carton contains 5 brown eggs $(\mathbf{D}=\mathbf{5})$. Alex selects 3 eggs at random (without replacement) and breaks them to make an omelet $(\mathbf{n}=3)$.
(a) What is the probability of selecting exactly 2 brown eggs $(\operatorname{Pr}(X=2)$?
(b) What is the probability of selecting no more than 2 brown eggs, $\operatorname{Pr}(x \leq 2)$?
(c) What is the probability of selecting at least 2 brown eggs, $\operatorname{Pr}(x \geq 2)$?
(d) What is the probability of selecting between 1 and 3 brown eggs, $\operatorname{Pr}(1 \leq x \leq 3)$?

USING DERIVE

USING DERIVE

12. Normal Distribution

- $\operatorname{Pr}(X<a)$, evaluated in DERIVE with "normal (a, μ, σ) "
- $\operatorname{Pr}(X>a)=1-\operatorname{Pr}(X<a)$ evaluated in DERIVE with " $1-\operatorname{normal}(a, \mu, \sigma)$ "
- $\operatorname{Pr}(a<X<b)=\operatorname{Pr}(X<b)-\operatorname{Pr}(X<a)$ evaluated in DERIVE with "normal $(b, \mu, \sigma)-\operatorname{normal}(a, \mu, \sigma)$ ".
Example: Assume $X=$ "VCE study score" is normally distributed.
VCE Chemistry has a mean study score of $30(\mu=30)$ and a standard deviation of $7(\mu=7)$.
(a) What is the probability that a randomly chosen student has a score less than $27(\operatorname{Pr}(\mathbf{X}<\mathbf{2 7}))$?
(b) What is the probability that a randomly chosen student has a score above 40
$(\operatorname{Pr}(X>40)=1-\operatorname{Pr}(X<40)) ?$
(c) What is the probability that a randomly chosen student has a score between 35 and 40

$$
(\operatorname{Pr}(35<\mathrm{X}<40)=\operatorname{Pr}(\mathrm{X}<40)-\operatorname{Pr}(\mathrm{X}<35)) \text { ? }
$$

(a) What is the probability that a randomly chosen student has a score less than $27(\operatorname{Pr}(\mathrm{X}<27))$?|
\#1: $\quad \operatorname{NORMAL}(27,30,7)$
\#2: 0.3341175708
Approx. 33% of students score less than 27
(b) What is the probability that a randomly chosen student has a score above $40(\operatorname{Pr}(X>40)=1-\operatorname{Pr}(X<40))$?
\#3: 1 - $\operatorname{NORMAL}(40,30,7)$
\#4: 0.07656372550
Approx. 7.7\% of students score above 40
(c) What is the probability that a randomly chosen student has a score between 35 and $40(\operatorname{Pr}(\mathbf{3 5}<\mathrm{X}<40)=\operatorname{Pr}(\mathrm{X}<\mathbf{4 0})-\operatorname{Pr}(\mathrm{X}<\mathbf{3 5}))$?
\#5: $\quad \operatorname{NORMAL}(40,30,7)-\operatorname{NORMAL}(35,30,7)$
\#6:
0.1609615365

Approx. 16% of students score lexs between 35 and 40 .

E:\12 CAS taskbook \backslash Normal dist.dfw saved
normal(40,30,7)-normal(35,30,7)

USING DERIVE

Inverse Normal Distribution

EXAMPLE 1:
X is a normally distributed random variable with mean 30 ($\mu=30$) and standard deviation $7(\sigma=7)$.
Find the value of a such that $\operatorname{Pr}(\mathrm{X}<\mathrm{a})=0.95$.

```
X is normally distributed with mean 30 ( }\boldsymbol{~}=30\mathrm{ ) and standard deviation 7 ( 0 = 7)
Find the value of a such that }\operatorname{Pr}(\boldsymbol{X}<a)=0.95
Need to solve NORMAL (a,30,7)=0.95, numerically
Step 1: Type NORMAL(a,30,7)=0.95, then [Enter]
Step 2: SOLVE >Expression. Select "Numerically" and "Real", click "Solve" botton
```


$\# 7: \quad \operatorname{NORMAL}(a, 30,7)=0.95$
\#8: $\operatorname{NSOLUE}(\operatorname{NORMAL}(a, 30,7)=0.95, a$, Real)
\#9

```
a = 41.51397526
```

This means that 95% of students have a study score below 41.5
EXAMPLE 2: Assume $\mathrm{X}=$ "weight of eggs" is normally distributed 25% of eggs produced on a particular farm weigh less than 40 gram. That is, $\operatorname{Pr}(X<40)=0.25$.
The mean weight is known to be 55 grams ($\mu=55$).
Find the standard deviation ($\sigma=$?).

```
EXAMPIE 2: Assume \(\mathrm{X}=\) = "weight of eggs" is normally distributed
\(\mathbf{2 5 \%}\) of eggs produced on a particular farm weigh less than 40 gram. That is, \(\mathbf{P r}(\mathbf{X}<\mathbf{4 0})=0.25\)
The mean weight is known to be 55 grams ( \(\boldsymbol{\mu}=\mathbf{5 5}\) ).
Find the standard deviation ( \(\boldsymbol{\sigma}=\) ?).
Need to solve NORMAL \((40,55, \circ)=0.25\), numerically
```

STEP 1: Type NORMAL $(40,55, \sigma)=0.25$, then $[E N T E R]$
\#7: $\quad \operatorname{NORMAL}(40,55, \sigma)=0.25$

STEP I: SOLVE >Expression. In dialog box select: "Numerically" and "Real". Chick "Solve" button

\#8: $\operatorname{NSOLUE}(\operatorname{NORMAL}(40,55, \sigma)=0.25, \sigma$, Real $)$
\#9:
$=22.23903179$
The standard deviation is $\mathbf{2 2}$ grams

