1. CURVE SKETCHING

🖈 Derive 5 - [Algebra 1 E:\curve sketching.dfw]		
Eile Edit Insert Author Simplify Solve Calculus Declare Options Window Help		
Step1: Define the function HINT: Shortcut to		
#1: $f(x) := 4 \cdot x^3 - 7 \cdot x^2 - 5 \cdot x + 6$ SOLVE > Expression		
Step 2: X-intercepts - solve f(x)=0. Highlight f(x). Solve>Expression(Real). Click "SOLVE" button. "v" in DERIVE means "or".		
<pre>#2: SOLUE(f(x), x, Real)</pre>		
#3: $x = \frac{3}{4} \lor x = 2 \lor x = -1$		
Step 3: Y-intercepts - $x=0$. Type f(0), then [Enter] then [=] toolbar icon. Answer is y=6.		
#4: f(0)		
#5: 6		
Step 4: Stationary points - $f'(x)=0$. Type $f'(x)=0$. Then Solve>Expression(Real). Click "SOLVE".		
#6: f'(x) = 0		
#7: SOLUE(f'(x) = 0, x, Real)		
#8: $x = \frac{7}{12} - \frac{\sqrt{109}}{12} + \frac{7}{12}$		
Click the approximate button to get a rational answer		
#9: $x = 1.453358875 \lor x = -0.2866922090$		
Step 5: y-value of Stationary points. Type f(1.453358875) then [Enter] then [approximate]. Repeat for f(-0.2866922090).Use copy/paste.		
#10: f(1.453358875)		
#11: -3.773117636		
#12: f(-0.286692209)		
#13: 6.763858377		

Label all points on the graph

2. ABSOLUTE VALUE FUNCTION

3. TRIGONOMETRY

(a) Solving Trig equations in either radians or degrees

A Derive 5	_ @ ×		
Eile Edit Insert Author Simplify Solve Calculus Declare Options Window Help			
Algebra 1	Algebra 2 trig.dfw		
RADIANS & DEGREES The factory default setting is in radians. To change between radians and degrees, DECLARE > Simplification Settings Change the "angular unit" in the dialog box Simplification Settings Transformation Direction Exponential Auto Ingerter Angular unit Radian Precision Radian Mode: Exact Digits Image: Image:	SOLVING TRIG EQUATIONS Derive gives 3 solutions over $-\pi \le x \le \pi$ Examples 1: find x if sin $2x = \sqrt{3}/2$, $-\pi \le x \le \pi$ Step 1: Type sin $(2x)=\sqrt{3}/2$ [Enter] Step 2: SOLVE > Expression(Algebraic & Real) #1: SIN $(2 \cdot x) = \frac{\sqrt{3}}{2}$ #2: SOLUE $\left(SIN(2 \cdot x) = \frac{\sqrt{3}}{2}, x, Real\right)$ #3: $x = \frac{\pi}{6} \lor x = -\frac{2 \cdot \pi}{3} \lor x = \frac{\pi}{3}$ Use a unit circle to see that the fourth solutionis $-5\pi/6$ Example 2: find x if sin $2x = \sqrt{3}/2$, $0 \le x \le 2\pi$ Use a unit circle to see that $-5\pi/6 = 7\pi/6$ and $-2\pi/3 = 4\pi/3$ Solutions are $\pi/6$, $\pi/3$, $7\pi/6$, $4\pi/3$		
Press F1 for Help			
<u></u>] α β γ δ ε ζ η θ t κ λ μ ν ξ ο π ρ σ τ υ φ x Ψ ω	00 π ŝ ' ' U / r / 2 > = % ^ * + }])		

(b) Simplifying & Expanding Trig expressions (Double angle formulas)

Derive 5	<u></u>
Eile Edit Insert Author Simplify Solve Calculus Declare Options Window Help	
$ \left\ \begin{array}{c} \square & \overleftrightarrow{\Rightarrow} \end{array} \right\ \stackrel{*}{\Rightarrow} \bigoplus \left \begin{array}{c} \overset{*}{\Rightarrow} \end{array} \right \stackrel{*}{\Rightarrow} \longmapsto \left \begin{array}{c} \overset{*}{\textcircled{>}} \end{array} \right \stackrel{*}{\Rightarrow} \left \begin{array}{c} \overset{*}{\end{array} \right \stackrel{*}{ } \left \begin{array}{c} \overset{*}{\end{array} \right \stackrel{*}{ } \left \begin{array}{c} \overset{*}{ } \left \begin{array}{c} \overset{*}{ } \right \stackrel{*}{ } \left \begin{array}{c} \overset{*}{ } \left \begin{array}{c} \overset{*}{ } \right \left \left \begin{array}{c} \overset{*}{ } \right \left \left \begin{array}{c} \overset{*}{ } \right \left \left \left \begin{array}{c} \end{array}{ } \right \left \left $	$\Sigma \Pi {\rightarrow} {}{} {} \frac{9}{2}$
Algebra 1	Algebra 2 trig2.dfw
EXPANDING & COLLECTING (simplifying) Set DERIVE to either EXPAND or COLLECT terms in a trig expression DECLARE > Simplification Settings Select the setting in "TRIGONOMETRY" Select the setting in "TRIGONOMETRY" Implification Settings Transformation Direction Exponential Auto Trigonometry: Expand Logarithm: Auto Trigonometry: Expand Angular unit: Radian Precision Mode: Exact Digit: 10 Branch: Principal OK Cancel Reset	Example 1. Expand (a) $\cos 2\theta$ (b) $\sin(x + y)$ STEP 1: DECLARE >Simplification >Trig >Expand #1: Trigonometry := Expand STEP 2: $\cos(2\theta)$ [Enter][=]. $\sin(x+y)$ [Enter][=] #2: $\cos(2\cdot\theta)$ #3: $2\cdot\cos(2\theta)^2 - 1$ #4: $\sin(x + y)$ #5: $\cos(x)\cdot\sin(y) + \sin(x)\cdot\cos(y)$ Example 2. Simplify (collect) (a) $2\cos\theta$ $\sin\theta$ (b) $\cos x \cos y - \sin x \sin y$ STEP 1: DECLARE >Simplification >Trig >Collect #6: Trigonometry := Collect STEP 2: $2\cos(\theta)\sin(\theta)$ [Enter][=]. etc. #7: $2\cdot\cos(\theta)\cdot\sin(\theta)$ #8: $\sin(2\cdot\theta)$ #9: $\cos(x)\cdot\cos(y) - \sin(x)\cdot\sin(y)$ #10: $\cos(x + y)$ When finished, return to "TRIGONOMETRY >Auto"
Press F1 for Help	
$] \lor = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
μαβγδεζηθικλμνξοπρστυφχ ψω	U 1 2 + * ^ Z = ζ 5 y 7 \ U 1 7 ê π @

4. Exponentials

NOTE: e^{-2x} is entered as $\hat{e}^{\wedge}(-2x)$ in DERIVE

 $\frac{6^{2-x} \times 2^x}{3^{1-x}}$

(a) Simplifying

(b) Solving indicial equations

Example: Solve to 3 decimal places $4e^{x} + 6e^{-x} - 11 = 0$

Example: Simplify

👍 Derive 5		
Eile Edit Insert Author Simplify Solve Calculus Declare Options Window Help		
$\left\ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I ≁ ≵ १	
Algebra 2 Simplify indices.dfw	Algebra 1	
$\frac{6}{3} \frac{1}{3} \frac{1}$	Solving indicate Equations Example: Solve to 3 decimal places $4e^x + 6e^{-x} - 11 = 0$ Step 1: $4\hat{e}^A(x) + 6\hat{e}^A(-x) - 11 = 0$ [Enter] $\begin{array}{c} \times & -x \\ \#1: & 4 \cdot \hat{e} + 6 \cdot \hat{e} & -11 = 0 \\ \end{array}$ Step 2: SOLVE >Expression (Algebraic, Real) $\#2: SOLUE(4 \cdot \hat{e} + 6 \cdot \hat{e} & -11 = 0, \times, \text{ Real})$ $\#3: \qquad x = LN\left(\frac{3}{4}\right) - x = LN(2)$ To get an approx. answer, click [\approx]	
	#4: × = −0.2876820724 × × = 0.6931471805	
	Answer: $x = -0.288$ or $x = 0.693$	
J	I	
$ \downarrow \lor = \scriptstyle \scriptstyle$		
<u>α β γ δ ε ζ η ε ι κ λ μ ν ξ ο π ρ σ τ υ φ x ψ ω</u>	00 π ŝ ' ' u / r v 2 > = x ^ * + }]) []	

5. Logarithms

NOTE: log_3x is entered as log(x,3) in DERIVE log_ex is entered as ln(x) in DERIVE, or as $log(x, \hat{e})$

(a) Simplifying

(b) Solving log equations

Example: Simplify $\log_4(x-2)^3 - \log_4(x-2)$

Example: Solve $\log_{e}(x+1) - \log_{e}(2x-1) = \log_{e}5$

👍 Derive 5			
Eile Edit Insert Author Simplify Solve Calculus Declare Options Window Help			
$\square \Rightarrow \blacksquare \Rightarrow \& \blacksquare \blacksquare \times \boxdot \boxdot \iff \blacksquare = \approx \Subset, \ \Im_{B} \lim \partial \int \Sigma \Pi 4 \times ?$			
Algebra 1 log simplify.dfw	Algebra 2		
Example: Simplify $3\log_27 + \log_27^3 - \log_27^6$ Type $3\log(7,2)+\log(7^3,2)-\log(7^6,2)$ Then [Enter] [=] $\frac{3}{12} + \frac{6}{12} $	<pre>Example: Find x such that loge(x+1)-loge(2x-1) = loge5 Step 1: Type ln(x+1)-ln(2x-1)=ln(5) Then [Enter] #1: LN(x + 1) - LN(2·x - 1) = LN(5) Step 2: SOLVE >Expression (Algebraic, Real) #2: SOLUE(LN(x + 1) - LN(2·x - 1) = LN(5),</pre>		
Proce Et fen Helm			
<u>Δβγδεζηθικλμνξοπρστυφχψω</u>	<u> ([(+ * ^ × = < ≤ ∨ ¬ \ υ ` ' ê π ∞</u>		

Example:

- Find the inverse function of $f(x) = x^2 1$, domain $x \ge 0$
- Draw graphs of f(x), $f^{-1}(x)$ and y = x, on the same set of axes

Find the equations of the tangent and normal to $f(x) = 0.2x^2 - 4$ at x = 1

8. Integration

(a) Indefinite integral (b) Definite integral Evaluate $\int_{x}^{\pi} \left(\frac{1}{x} + 3\cos\frac{x}{2}\right) dx$ Find $\int \left(\frac{1}{x} + 3\cos\frac{x}{2}\right) dx$ _ 8 × File Edit Insert Author Simplify Solve Calculus Declare Options Window Help □ 📽 🖬 🚭 👗 🖻 💼 🗙 📝 🖉 📨 📖 📒 = ≈ Q, %g, lim ∂ ∫ $\Sigma \Pi \Rightarrow \dot{X}$? 🔲 🗶 🚟 Algebra 1 🚟 Algebra 2 <u>- 🗆 ×</u> Step 1: Define $f(\mathbf{x}) := (1/\mathbf{x}) + 3\cos(\mathbf{x}/2)$ INDEFINITE INTEGRAL Step 1: Define $f(\mathbf{x}) := (1/\mathbf{x}) + 3\cos(\mathbf{x}/2)$ [Enter] $f(\mathbf{x}) := \frac{1}{\mathbf{x}} + 3 \cdot \cos \left| \frac{\mathbf{x}}{\mathbf{x}} \right|$ #1: $f(x) := \frac{1}{x} + 3 \cdot \cos\left(\frac{x}{2}\right)$ #1: Step 2: Highlight $f(\mathbf{x})$ and click $[\int]$ Calculus Integrate #1' × Step 2: Highlight f(x) and click [] Integral Definite integral Variable: 🔀 • Definite Upper Limit: **π** Choose O Indefinite Lower Limit: 1 Definite integral Integral Variable: × ٠ C Definite Upper Lient "Definite" Upper = π Indefinite 6 $\underline{\text{Lower}} = 1$ Constant: 0 Choose Indefinite integra 'Indefinite' Constant R Enter ΟK Simplify Cancel "Constant" Simplify Car $\int f(x) dx$ #2: ∫ f(×) d× #2: $LN(\pi) - 6 \cdot SIN \bigg| \frac{1}{--}$ + 6 $LN(\times) + 6 \cdot SIN$ #3: #3: Press F1 for Help User $\parallel \checkmark = \preceq \approx$ <u>α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ x ψ ω</u> ([{ + * ^ χ = < ≤ ∨ ¬ \ U ` ' ê π ∞</pre>

Further Notes on Indefinite Integral

(1) #3 (left window) gives the *exact* answer to $\int \left(\frac{1}{x} + 3\cos\frac{x}{2}\right) dx = log_e x + 6sin(x/2) + c$ (2) You can set the "constant of integration" as *c*, *0*, or any other value.

Further Notes on Definite Integral

(3) #3 (right window) gives the *exact* answer to
$$\int_{1}^{\pi} \left(\frac{1}{x} + 3\cos\frac{x}{2}\right) dx = log_{e}\pi + 6sin(1/2) + 6.$$

(4) To obtain a rational (decimal) approximation, highlight #3 and click [\approx].

USING DERIVE : 9. Signed region

(a) Draw the graph of the region bounded by $f(x) = x^3 + 2x^2 - x - 2$ and the x-axis.

Find the **area** of the region bounded by $f(x) = x^3 + 2x^2 - x - 2$ and the x-axis.

(c)Area between two curves

NOTE: Area =
$$\int_{a}^{b} [f(x) - g(x)] dx$$
, if $f(x) > g(x)$ in the interval [a,b]

Example

Find the area of the region bounded by f(x) = x + 1 and $g(x) = x^2 - 1$. (i) Find the points of intersection (From #4 below, x = -1, x = 2)

USING DERIVE 10. Binomial Distribution

- Binomial coefficients, ${}^{n}C_{x}$, evaluated in DERIVE with " comb(*n*,*x*)
- $\Pr(X = x) = {^{n}C_{x}p^{x}(1-p)^{n-x}}$, evaluated in DERIVE with "**binomial_density**(*x*,*n*,*p*) "
- $\Pr(X \le a)$, evaluated in DERIVE with $\sum_{n=0}^{a} binomial_density(x,n,p)$
- $\Pr(X \ge a)$ evaluated in DERIVE with $\sum_{x=a}^{n} binomial_density(x,n,p)$
- $\Pr(a \le X \le b)$ evaluated in DERIVE with $\sum_{x=a}^{b} binomial_density(x,n,p)$

Example:

Jo rolls a die 4 times ($\mathbf{n} = 4$). She defines "success" as rolling an even number ($\mathbf{p} = 0.5$). The random variable, X, denotes "rolling an even number".

- (a) What is the probability of rolling exactly 2 even numbers (Pr(X = 2))?
- (b) What is the probability of rolling no more than 2 even numbers ($Pr(X \le 2)$)?
- (c) What is the probability of rolling at least 3 even numbers ($Pr(X \ge 3)$)
- (d) What is the probability of rolling between 1 and 3 even numbers ($Pr(1 \le X \le 3)$)

💏 Algebra 1 Binomial.dfw

Jo rolls a die 4 times (n = 4). "Success" is rolling an even number (p = 0.5). (a) What is the probability of rolling exactly 2 even numbers (Pr(X = 2))? BINOMIAL_DENSITY(2, 4, 0.5) #1: #2: 0.375 (b)What is the probability of rolling no more than 2 even numbers $Pr(X \leq 2)$ BINOMIAL_DENSITY(x, 4, 0.5) #3: With #3 highlighted, click ' Σ 'button. Enter 'Lower limit'=0, 'Upper limit'=2 $\Sigma_{=0}^{2}$ BINOMIAL_DENSITY(x, 4, 0.5) #4: #5: 0.6875 (c)What is the probability of rolling at least 3 even numbers ($Pr(X \ge 3)$) Copy and paste #4, but change the limits to "x,3,4 " $\overset{4}{\Sigma}$ BINOMIAL_DENSITY(x, 4, 0.5) #6: #7: 0.3125 What is the probability of rolling between 1 and 3 even numbers ($Pr(1 \le X \le 3)$) Copy and paste #4, but change the limits to "x,1,3" 3 Σ BINOMIAL_DENSITY(×, 4, 0.5) ×=1 #8 : #9: 0.875

USING DERIVE 11. Hypergeometric Distribution

- Binomial coefficients, ${}^{n}C_{x} = {n \choose x}$, evaluated in DERIVE with " **comb**(*n*,*x*)
- $\Pr(X = x) = \frac{\binom{N}{x} \cdot \binom{N}{n-x}}{\binom{N}{n}}$, evaluated in DERIVE with *hypergeometric_density(x,n,D,N)*
- $\Pr(X \le a)$, evaluated in DERIVE with $\sum_{x=0}^{a} hypergeometric_density(x,n,D,N)$
- $\Pr(X \ge a)$ evaluated in DERIVE with $\sum_{x=a}^{n} hypergeometric_density(x,n,D,N)$
- $\Pr(a \le X \le b)$ evaluated in DERIVE with $\sum_{x=a}^{b} hypergeometric_density(x,n,D,N)$

Example:

Eggs are sold in cartons of 12 (N = 12). A carton contains 5 brown eggs (D = 5). Alex selects 3 eggs at random (without replacement) and breaks them to make an omelet (n = 3).

- (a) What is the probability of selecting exactly 2 brown eggs (Pr(X = 2))?
- (b) What is the probability of selecting no more than 2 brown eggs, $Pr(x \le 2)$?
- (c) What is the probability of selecting at least 2 brown eggs, $Pr(x \ge 2)$?
- (d) What is the probability of selecting between 1 and 3 brown eggs, $Pr(1 \le x \le 3)$?

```
Eggs are sold in cartons of 12 (N = 12). A carton contains 5 brown eggs (D = 5). Alex selects 3 eggs at random
and breaks them to make an omelet (n = 3).
   (a) What is the probability of selecting exactly 2 brown eggs ( Pr(X = 2))?
       HYPERGEOMETRIC_DENSITY(2, 3, 5, 12)
#1:
#2:
(b)
       What is the probability of selecting no more than 2 brown eggs, Pr(X \leq 2)
       HYPERGEOMETRIC_DENSITY(x, 3, 5, 12)
#3:
With #3 highlighted, click '\Sigma'button.
Enter 'Lower limit'=0, 'Upper limit'=2
       2
E_ HYPERGEOMETRIC_DENSITY(x, 3, 5, 12)
#4:
                                                      21
#5:
                                                      22
(c)
       What is the probability of selecting at least 2 brown eggs, Pr(X \ge 2)?
Copy and paste #4, but change the limits to "x,2,3"
           HYPERGEOMETRIC_DENSITY(x, 3, 5, 12)
#6 :
#7:
       What is the probability of selecting between 1 and 3 brown eggs, Pr(1 \le X \le 3)?
(d)
Copy and paste #4, but change the limits to "x,1,3 "
       3
Σ
           HYPERGEOMETRIC_DENSITY(x, 3, 5, 12)
#8 :
                                                      37
#9:
                                                      44
```

USING DERIVE 12. Normal Distribution

- Pr(X < a), evaluated in DERIVE with "**normal**(a, μ, σ)"
- $\Pr(X > a) = 1 \Pr(X < a)$ evaluated in DERIVE with "1 normal(a, μ, σ)"
- $\Pr(a < X < b) = \Pr(X < b) \Pr(X < a)$

evaluated in DERIVE with "normal(b, μ, σ) – normal(a, μ, σ)".

Example: Assume *X* = "VCE study score" is normally distributed.

- VCE Chemistry has a mean study score of 30 ($\mu = 30$) and a standard deviation of 7($\mu = 7$).
- (a) What is the probability that a randomly chosen student has a score less than 27 (Pr(X < 27))?
- (b) What is the probability that a randomly chosen student has a score above 40
- (Pr(X > 40) = 1 Pr(X < 40))?
 (c) What is the probability that a randomly chosen student has a score between 35 and 40 (Pr(35< X < 40) = Pr(X < 40) Pr(X < 35))?

💫 Derive 5 - [Algebra 2 Normal dist.dfw]	_ 8 ×
Eile Edit Insert Author Simplify Solve Calculus Declare Options Window Help	_ & ×
□ 🖨 🖬 🚭 👗 ங 🖻 🗙 📅 📅 🚥 📖 = ≈ 🔍 Sug lim ∂ ∫ ∑ Π 🦘 🔆 💡	
VCE Chemistry has a mean study score of 30 ($\mu = 30$) and a standard deviation of 7($\mu = 7$).	
(a) What is the probability that a randomly chosen student has a score less than 27 (Pr(X< 27)) ?	
#1: NORMAL(27, 30, 7)	
#2: 0.3341175708	
Approx. 33% of students score less than 27	
(b) What is the probability that a randomly chosen student has a score above 40 ($Pr(X > 40) = 1 - Pr(X < 40)$)?	
#3: 1 - NORMAL(40, 30, 7)	
#4: 0.07656372550	
Approx. 7.7% of students score above 40	
(c) What is the probability that a randomly chosen student has a score between 35 and 40 ($Pr(35 < X < 40) = Pr(X < 40) - Pr(X < 35)$)?	
#5: NORMAL(40, 30, 7) - NORMAL(35, 30, 7)	
#6: 0.1609615365	
Approx. 16% of students score less between 35 and 40.	
E:\12 CAS taskbook\Normal dist.dfw saved	
Ι α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ x ψ ω Ι ζ [ξ + * ^ χ = ζ <u>ζ</u> ¬ \ U ` ' ê π ω	

Inverse Normal Distribution

EXAMPLE 1:		
X is a normally distributed random variable with mean 30 (μ = 30)		
and standard deviation 7 ($\sigma = 7$).		
Find the value of a such that $Pr(X < a) = 0.95$.		
X is normally distributed with mean 30 ($\mu = 30$) and standard deviation 7 ($\sigma = 7$). Find the value of a such that $Pr(X < a) = 0.95$.		
Need to solve NORMAL(a,30,7)=0.95, numerically Step 1: Type NORMAL(a,30,7)=0.95, then [Enter] Step 2: SOLVE >Expression. Select "Numerically" and "Real". Click "Solve" botton		
Solve Expression - Normal dist.dfw #7		
Solution Variables Solution Method Solution Domain Image: Solution Deprice of Algebraically Image: Solution Deprice of Complex Upper: 10 Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Solution Deprice of Complex Image: Sol		
OK Solve Cancel		
#7: NORMAL(a, 30, 7) = 0.95		
#8: NSOLVE(NORMAL(a, 30, 7) = 0.95, a, Real)		
#9: a = 41.51397526		
This means that 95% of students have a study score below 41.5		
EXAMPLE 2: Assume X = "weight of eggs" is normally distributed 25% of eggs produced on a particular farm weigh less than 40 gram. That is, $Pr(X < 40) = 0.25$. The mean weight is known to be 55 grams ($\mu = 55$). Find the standard deviation ($\sigma = ?$).		
EXAMPLE 2: Assume $X = "weight of eggs" is normally distributed25% of eggs produced on a particular farm weigh less than 40 gram. That is, Pr(X < 40) = 0.25.The mean weight is known to be 55 grams (\mu = 55).Find the standard deviation (\sigma = ?).$		
Need to solve NORMAL(40,55, c) = 0.25, numerically		
STEP 1: Type NORMAL(40,55, c) = 0.25, then [ENTER]		
#7: NORMAL(40, 55, σ) = 0.25		
STEP 1: SOLVE > Expression. In dialog box select: "Numerically" and "Real". Click "Solve" button		
Solve Expression - Normal dist.dfw #7		
Solution Variables Solution Method Solution Domain Solution Bounds Image: Construction Constructina Construction Construction Construction Con		
OK Solve Cancel		
#8: NSOLVE(NORMAL(40, 55, σ) = 0.25, σ, Real)		
#9: σ = 22.23903179		
The standard deviation is 22 grams		