\qquad
Date \qquad

$$
\mathbf{d}=\mathbf{2 r} \quad \mathbf{C}=\pi \mathbf{d}=2 \pi \mathbf{r} \quad \mathbf{A}=\pi \mathbf{r}^{2}
$$

Find the circumference and area of each circle. Write each answer with a reasonable number of decimal digits and explain why you chose to write only that many digits.

1. $r=6 \mathrm{~cm}$
2. $r=7.8 \mathrm{ft}$
3. $d=300 \mathrm{~cm}$
4. $\mathrm{d}=31.4 \mathrm{yd}$

For each circle, find the radius to the nearest cm .
5. $C=68$ in
6. $C=1024 \mathrm{~cm}$
7. $A=500 \mathrm{in}^{2}$
8. $A=3875 \mathrm{~cm}^{2}$

The target below is 10 feet in diameter. The inside 50-point circle is 2 feet in diameter. Each ring is 1 foot wide. Point values for each ring are listed.

9. What is the area of the bull's-eye?
10. What proportion of the area of the target is the bull's-eye?
\qquad
11. What is the area of the 10 -point ring?
\qquad
12. What is the total area of all of the shaded rings (including the bull's-eye)?
13. What proportion of the area of the target is shaded?
\qquad
14. What proportion of the area of the target is not shaded?
15. Is an archer more likely to score 40 points with two arrows by scoring 10 first and 30 second or by scoring 20 with both arrows? Explain your reasoning.
\qquad
\qquad
\qquad

