Arcs and Central Angles of Circles

STUDENT ACTIVITY

Name	
Period	
Date	

by: Tina Hill, Daniel Boone High School, Washington County, TN

Activity Overview

Students discover the central angles of circles plus minor and major arcs.

Concepts

- · Central Angles
- Minor Arcs
- Major Arcs

Tennessee Standards

- Geometry
 - 3108.4.40 Find angle measures, intercepted arc measures, and segment lengths formed by radii, chords, secants, and tangents intersecting inside and outside circles.
 - 3108.5.1 Determine the area of each sector and the degree measure of each intercepted arc in a pie chart.

Teacher Preparation

- Load or have the students load the tns file: arcs and central angles of circles.tns
- Copy the student activity sheet: Arcs and Central Angles of Circles Student Activity Sheet

TI Nspire Applications

Graphs & Geometry

Calculator

Notes

Page 1.2

Using the angle measurement tool, find the measure of the angle between each number on the face of a clock with the center of the circle as the vertex of the angle. (That is, how many degrees are there between the 12 and the 1, between the 1 and the 2, and so forth?)

How many degrees are there between each of the numbers on the face of a clock?

Students should find that the measurement between each number is 30° with the total number of degrees = 360° .

Arcs and Central Angles of Circles STUDENT ACTIVITY

Name		
Period		
D	ate	

Page 1.3

Page 1.4

Page 1.5

Arcs and Central Angles of Circles

TEACHER GUIDE

Page 1.6

Pages 1.7 - 1.10

Arcs and Central Angles of Circles

TEACHER GUIDE

Page 1.11

Measure the remaining angles to verify that they are the same measure as $\angle AOB$.

Arc AB is one-sixth (60/360) of the total circle.

To find the length of arc AB

find the circumference of the circle $2\pi r = 37.70$ multiply the circumference by 1/6 37.70*(1/6) = 6.28

Find the length of arc AC

arc AC is what part of the total circle? $\underline{120/360 \text{ or } 1/3}$ multiply by circumference $\underline{37.70*1/3} = \underline{12.57}$

Find the length of arc AD

arc AD is what part of the total circle? $\underline{180/360} = \underline{1/2}$ multiply by circumference $\underline{37.70*1/2} = \underline{18.87}$

How do you think you would find the measure of the major arcs?

Answer may vary. Example: Subtract the minor arc from the circumference.

