
NUMB3RS Activity Episode: “In Plain Sight”
 Teacher Page

 NUMB3RS Activity: Error Correction
Episode: “In Plain Sight”

Topic: Error Correction Codes Grade Level: 9 - 12
Objective: Students will learn how Hamming codes are used for error correction.
Time: 30 minutes

Introduction

Most of the information in the world today is digital. Televisions, CDs, and computers
store and display information digitally, but these devices sometimes misread pieces of
the digital data, resulting in poor pictures or lost information. To make sure that
computers read data correctly, many error correction techniques have been developed.
These techniques help a computer to identify and fix mistakes. In the episode “In Plain
Sight”, Charlie and Larry give a brief introduction to Reed-Solomon error correcting
code. Reed-Solomon is extremely complex, so a simpler error correcting code called
Hamming code is used here.

Richard Hamming’s code is dependent upon the concept of parity. Parity indicates if the
number of 1s in a piece of data is even or odd. The parity is even if there is an even
number of 1s, and odd if there is an odd number of 1s (i.e. the binary sequence
101101000110 has even parity because there are six 1s in the sequence.)

Discuss with Students

NUMB3RS Example During the episode “In Plain Sight”, Larry scratches a CD with a
paper clip. He tells Don "If I scratched a record, it would be ruined, but this CD will still
play. I've created gaps in the readable data." If data has been destroyed, how can the
CD still be played? Charlie explains: "[With] Reed-Solomon Error Correcting Code, the
software fills in the gaps, making an educated guess about what it should be—resulting
in complete images from partial data."

The Hamming error correcting code takes a piece of code and makes a new one by
adding parity bits, designated by P1, P2, P4, P8, etc. Note that parity bits are numbered
according to the powers of 2. These numbers show where to put each parity bit.

Each parity bit “checks” certain numbers in a sequence: For example, for the code:
1011010

• P1 checks every odd-numbered position. 1011010
• P2 checks positions 2, 3, 6, 7, 10, 11, …, alternately reading two and then skipping

two. 1011010
• P4 checks positions 4, 5, 6, 7, 12, 13, 14, 15, …alternately reading four in a row and

then skipping four in a row. 1011010

education.ti.com/go/NUMB3RS © 2005 Texas Instruments Incorporated
Patrick Flynn, Turner High School, Kansas City, KS

NUMB3RS Activity Episode: “In Plain Sight”
 Teacher Page 2

Example Say you want to encode the sequence “1 0 1 1” as a Hamming sequence with
even parity.

The first step is to insert the parity bits into the correct place. You will make a new
sequence. Remember that the subscript of the parity bit tells you where to put it:

P1 P2 1 P4 0 1 1

P1 goes first, followed by P2 and so on. There’s no third parity bit, so you would put in the
first number from the original sequence, followed by P4, which should of course be the
fourth number in the new sequence. There are no fifth, sixth, or seventh parity bits, so
the last three numbers come from the original sequence. The next step is to replace the
parity bits with numbers, 0 or 1.

On the previous page, we said that P1 checks the odd-numbered positions:
P1 P2 1 P4 0 1 1. Since we are using even parity, the odd-numbered positions must
add up to an even number. That means that P1 must equal 0, since P1 + 1 + 0 + 1 = 2.
So our sequence so far is: 0 P2 1 P4 0 1 1.

Next, we substitute a number for P2. We know which positions P2 checks, so we identify
them: 1 P2 1 P4 0 1 1. We’re still using even parity, so these numbers must add up to
an even number. Again, this requires that P2 = 1. So our sequence so far is:
0 1 1 P4 0 1 1.

We do the same thing for P4. Identify which places it checks: 1 1 1 P4 0 1 1, then
figure out what P4 must equal. In this case, again, P4 = 0. So, writing the original
sequence 1 0 1 1 as a Hamming sequence gives us:

0 1 1 0 0 1 1

Now, suppose that this data is misread as 0 1 1 0 0 1 0. How would the error be
detected? The Hamming code will catch the error by recalculating the parity bits:

0 1 1 0 0 1 0

The underlined digits checked by P1 add up to an odd number. There must be an error in
position 1, 3, 5, or 7.

0 1 1 0 0 1 0

The underlined digits checked by P2 add up to an odd number. There must be an error in
position 2, 3, 6, or 7.

0 1 1 0 0 1 0

The underlined digits checked by P4 add up to an odd number. There must be an error in
position 4, 5, 6, or 7. If there is at most one error, then it must be in position 7.

Student page answers: 1. P1 = 1 because the parity of {0 0 1} is odd, P2 = 0 because the parity
of {0 1 1} is even, P4 = 0 because the parity of {0 1 1} is even 2. error in 3rd position 3. error in
4th position 4. No error 5. P1 = 0 P2 = 1 P4 = 1 P8 = 1 P16 = 1, P32 = 0.

education.ti.com/go/NUMB3RS © 2005 Texas Instruments Incorporated
Patrick Flynn, Turner High School, Kansas City, KS

NUMB3RS Activity Episode: “In Plain Sight”
 Student Page 1

Name: __________________________________ Date: ________________

NUMB3RS Activity: Error Correction

In the episode “In Plain Sight”, Larry scratches a music CD but says it will still play
perfectly because of the error correction code on the CD. How does this work?

Correction codes depend upon an idea called parity. Parity indicates if the number of 1s
in a piece of data is even or odd. The parity is even if there is an even number of 1s,
and odd for an odd number (i.e. the sequence 11110 has even parity because there is
an even number (4) of 1’s in the sequence.) For this activity, we will use even parity.

A music CD is an example of digital information. Suppose a very small piece of music
data is represented by the sequence of bits 0 1 1 0. To use “Hamming error correcting
code,” parity bits are inserted in the data sequence to check if the data is being read
accurately. These parity bits (P1 P2 P4 P8…) are inserted at locations 1, 2, 4, 8, etc.
(powers of 2) in the transmitted data to check the parity of a subsequence of the original
data, starting with itself:

• P1 checks one bit, skips one bit, checks one bit, etc. (positions 1, 3, 5, etc.)
• P2 checks 2 bits, skips 2 bits, checks 2 bits, skips 2 bits, etc. (positions 2, 3, 6, 7,

etc.)
• P4 checks 4 bits, skips 4 bits, checks 4 bits, skips 4 bits, etc. (positions 4, 5, 6, 7, 12,

13, 14, 15, etc.)

The parity bit is a 1 or a 0 to make the number of 1s in the bits it checks even.

Example Code the sequence 0 1 1 0 into Hamming error correction code.

Step 1: Insert parity bits (P1 P2 P4) at the 1st, 2nd , and 4th data positions in the list.
 P1 P2 0 P4 1 1 0

Step 2: Determine the value of the 1st parity bit P1.

 P1 checks the sequence P1 P2 0 P4 1 1 0

 P1 + 0 + 1 + 0

To make even parity, P1 = 1.

Step 3: Determine the value of the 2nd parity bit P2.

 1 P2 0 P4 1 1 0
 P2 checks the sequence 1 P2 0 P4 1 1 0
 P2 + 0 + 1 + 0

 To make even parity, P2 = 1.

education.ti.com/go/NUMB3RS © 2005 Texas Instruments Incorporated
Patrick Flynn, Turner High School, Kansas City, KS

NUMB3RS Activity Episode: “In Plain Sight”
 Student Page 2

Step 3: Determine the value of the 3rd parity bit P4.
 1 1 0 P4 1 1 0
 P4 checks the sequence 1 1 0 P4 1 1 0

 P4 + 1 + 1 + 0
To make even parity, P4 = 0.

The data sequence is now coded with Hamming error correction code as: 1 1 0 0 1 1 0

What makes Hamming extremely useful is its ability to correct misread data. Suppose
the data from the example is misread as 0 1 1 0 0 0 0. How is the error caught and
fixed?

The Hamming code can correct a single error like this by using the parity bits. It reads
and records the positions in which the digits are wrong.

For the misread sequence 0 1 1 0 0 0 0, P1 fails because 0 + 1 + 0 + 0 = 1, which is odd.
But, it shouldn’t be odd. P2 passes, and P4 passes. The 1st digit must be the source of
the error and its value is switched.

Exercises

1. Determine the parity bit values for the Hamming sequence P1 P2 0 P4 0 1 1
 P1 = ______ P2 = ______ P4 = ______

Use the Hamming error correction code to spot the error (if there is one.)

2. 0 1 0 1 1 0 0 ___

3. 0 1 1 1 0 1 1 ___

4. 1 0 1 0 1 0 1 ___

5. Music CDs use strings of 32 bits, including error correction. Determine the parity bit
values for the CD data sequence:

P1 P2 1 P4 1 0 1 P8 0 0 1 1 1 0 0 P16 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 P32

P1 = _____ P2 = _____ P4 = _____ P8 = _____ P16 = _____ P32 = _____

education.ti.com/go/NUMB3RS © 2005 Texas Instruments Incorporated
Patrick Flynn, Turner High School, Kansas City, KS

NUMB3RS Activity Episode: “In Plain Sight”

The goal of this activity is to give your students a short and simple snapshot into a very extensive
math topic. TI and NCTM encourage you and your students to learn more about this topic using the

extensions provided below and through your own independent research.

Extensions

Activity: Coded numbers in your house.

Introduction

While Hamming codes auto-correct mistakes due to misreads, they require many extra
digits to be added to the data. For small data lists (like UPC codes on grocery items,
credit card numbers, ISBN numbers on textbooks, etc.) it is much easier to just rescan
the data list if it is read wrong. The computer determines if the data was read wrong by
the use of an extra digit (called a check digit). Below is an example.

UPC codes

All items bought in a store have a Universal Product Code (UPC) on
the label. The UPC code to the left has the sequence
0 1 2 3 4 5 0 2 9 9 5 0. When the computer scans this item at the
cash register, it performs a calculation to check if it was scanned
correctly. The answer to this calculation must be the same as the
last digit in the sequence (called the check digit). If the computer
doesn’t get the correct answer, it is told to scan again.

Here is how it works…Take a UPC code (without the check digit) and multiply each
single digit in the following way…

 1 2 3 4 5 0 2 9 9 5
X 3 1 3 1 3 1 3 1 3 1
 3 2 9 4 15 0 6 9 27 5

Now add the results 3 + 2 + 9 + 4 +15 + 0 + 6 + 9 + 27 + 5 = 80
The check digit is added to the sum and the result must be divisible by 10.
In this case, 80 + 0 is divisible by 10, so the check works.

Additional Resources

Visit Joe Gallian’s web site that calculates the check digit for many other number
sequences: http://www.d.umn.edu/~jgallian/fapp5/

For the Student

• So far you’ve seen how to detect single errors. Research how two-digit errors are

detected using Hamming error correction code.
• Use your calculator to perform Hamming error correction by multiplying matrices.

Research Hamming (7, 4) to find out how.
• Research other error correction codes, such as repetition, two-out-of-five, and Reed-

Solomon error correction code.

Related Topic:
Find out how CD players read digital data from a disk:
http://www.howstuffworks.com/cd.htm

education.ti.com/go/NUMB3RS © 2005 Texas Instruments Incorporated
Patrick Flynn, Turner High School, Kansas City, KS

	Discuss with Students
	Additional Resources

