\qquad

Adding Complex Numbers

Enter Exercises 1-5 on your calculator. Record the solution below and discuss with a partner how you think the calculator is adding the two complex numbers.

1. $(3+4 i)+(2+5 i)=$ \qquad 2. $(1-6 i)+(3-2 i)=$ \qquad
2. $(2+5 i)+(6-8 i)=$ \qquad 4. $(-2+3 i)+(1-2 i)=$ \qquad
3. $(4-3 i)+(-5-7 i)=$ \qquad
4. Explain how to add two complex numbers.

Subtracting Complex Numbers

Enter Exercises 1-5 on the calculator. Record the solutions below and discuss with a partner how you think the two complex numbers are being subtracted.

1. $(3+4 i)-(2+5 i)=$ \qquad
2. $(1-6 i)-(3-2 i)=$ \qquad
3. $(2+5 i)-(6-8 i)=$ \qquad 4. $(-2+3 i)-(1-2 i)=$ \qquad
4. $(4-3 i)-(-5-7 i)=$ \qquad
5. Explain how to subtract two complex numbers.

Multiplying Complex Numbers

Enter Exercises 1-2 on the calculator. Record the solutions below and discuss with a partner how you think the complex numbers are being multiplied.

1. $(3+4 i)(2+5 i)=$ \qquad 2. $(1-6 i)(3-2 i)=$ \qquad
2. Why is there no i^{2} in the answers above?

Now, complete Exercises 4-6 using your calculator.
4. $(2+5 i)(6-8 i)=$ \qquad 5. $(-2+3 i)(1-2 i)=$ \qquad
6. $(4-3 i)(-5-7 i)=$ \qquad
7. Explain how to multiply two complex numbers.

Dividing Complex Numbers

Enter Exercises 1-2 on the calculator. Record the solutions below and discuss with a partner how you think two complex numbers are divided.

1. $\frac{(2+4 i)}{3 i}=$
2. $\frac{(1-2 i)}{2 i}=$ \qquad
3. Notice the answers do not contain i in the denominator. What can you multiply an expression by to eliminate the imaginary part of the denominator? Try this for Exercises 1 and 2. (Hint: $i^{2}=-1$.)

Now, complete Exercises 4-6 on calculator.
4. $\frac{(2-3 i)}{4 i}=$
5. $\frac{(4-7 i)}{-3 i}=$
6. $\frac{(8+5 i)}{-2 i}=$ \qquad
7. Repeat Question 3 for Exercises 4-6.
8. Explain how to divide a complex numbers by an imaginary number.
9. CHALLENGE: Find the rule to divide two complex numbers. How could you divide $\frac{(3+4 i)}{(2-5 i)} ?$ (Hint: Notice that $(2-5 i)(2+5 i)=29$. Use this fact to help simplify the problem. $2+5 i$ and $2-5 i$ are called complex conjugates.)

