## Matrices - Act 2

## Student Activity

$$
\begin{array}{llllll}
7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$


Student

## Multiplication

Start a new document and insert a calculator application.
The first matrix will be defined as: mata
It is not necessary to have 'mat' at the start of the variable name, however it will help immediately identify which of your defined variables is a matrix.

In this document a matrix is denoted as: [A].
One way to define a variable is to use ":="
Type: mata:=
Use the maths template and select the
$2 \times 2$ matrix template (shown opposite)
Define matrix $A$ as: mata:= $\left.\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Use the [TAB] key to navigate around the matrix.


Repeat the above process to create a second matrix called Matrix B
matb :=[ $\left.\begin{array}{ll}e & f \\ g & h\end{array}\right]$


Multiply the two matrices together:
mata $\times$ matb

## Note:

To avoid typing the variable name again, press the variable button and select the variable name from the list.

## Questions

1. Write down the rule for multiplying two: $2 \times 2$ matrices and include a diagram showing how each component is determined.
2. Use your rule to answer the following: (ie: Do these questions by hand)
a) $\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right] \times\left[\begin{array}{ll}2 & 3 \\ 1 & 5\end{array}\right]=$
b) $\left[\begin{array}{ll}2 & 3 \\ 1 & 5\end{array}\right] \times\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]=$
c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{ll}6 & 8 \\ 1 & 2\end{array}\right]=$
d) $\left[\begin{array}{ll}6 & 8 \\ 1 & 2\end{array}\right] \times\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=$
e) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{ll}2 & 3 \\ 1 & 5\end{array}\right]=$
f) $\left[\begin{array}{ll}2 & 3 \\ 1 & 5\end{array}\right] \times\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=$
g) $\left[\begin{array}{ll}7 & 3 \\ 5 & 2\end{array}\right] \times\left[\begin{array}{cc}-2 & 3 \\ 5 & -7\end{array}\right]=$
h) $\left[\begin{array}{ll}2 & 3 \\ 1 & 5\end{array}\right] \times\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=$
3. Check your answers to the above questions using the CAS calculator.

## Commutative Law:

$$
a \times b=b \times a
$$

4. Use the algebraic representation of matrix multiplication from Question1 combined with selected answers from Question 2 to determine if the commutative law (above) applies to the multiplication of matrices.
5. Multiply matrix $A$ by itself; mata $\times$ mata, check this answer against mata ${ }^{2}$.

## Dimensions

Two new matrices need to be defined: matc and matd

$$
\begin{aligned}
& \text { matc }:=\left[\begin{array}{ll}
m & n
\end{array}\right] \\
& \text { matd }:=\left[\begin{array}{l}
p \\
q
\end{array}\right]
\end{aligned}
$$


6. Explore the multiplication of matrices with different dimensions. Record the results for each of the following:
a) $[\mathrm{A}] \times[\mathrm{D}]=$
b) $[C] \times[A]=$
c) $[\mathrm{A}] \times[\mathrm{C}]=$
d) $[\mathrm{D}] \times[\mathrm{A}]=$
e) $[C] \times[D]=$
f) $[D] \times[C]=$
g) Comment on your findings with regards to the multiplication of matrices with different dimensions. Hint: Write down the dimensions of each matrix "Rows x Columns" next to each multiplication problem above noting which multiplication problems produce a result and the corresponding dimensions of the result.

