Purpose: This is a discovery exercise. It is about tangent lines and zeros of polynomial functions.

1. Given the $3^{\text {rd }}$ degree polynomial functions

$$
f(x)=x^{3}-4 x^{2}+x+6 \text { and } g(x)=2 x^{3}+5 x^{2}-2 x-5
$$

a) Graph the cubic polynomial functions $f$ and $g$ and notice that each has 3 distinct zeros.

b) Calculate the average of any two zeros from the function $f$. Call the average $z$.
c) Graph the tangent line at the point $(z, f(z))$. Where does the tangent line cross the $x$ - axis?
d) Calculate the average, $v$, of another pair of zeros from the function $f$ and note where the tangent line at $(v, f(v))$ crosses the $x$-axis.
e) Complete a) - d) for the function $g$.
f) State a general property shared by cubic functions with 3 distinct zeros. Make up your own cubic function with three distinct zeros and test your property. Does your property hold?

