Open the TI-Nspire document Slope_of_Secant_Line.tns.

Objective: To use the slope of secant lines to predict the slope of the tangent line to a curve at a given point.

Directions: Move the indicated point toward the solid black point on the curve. At each step, the file is set up to capture the
 CALCULUS

Slopes of Secant Lines
Explore the slope of secant lines as the line becomes tangent to the curve. Predict the value of the slope of the tangent line.

Move to page 2.2.

1. Given function $f(x)=x^{2}$, Step size $=0.5$, Point $(1,1)$

Record some of your table of slopes and prediction for the slope of the tangent line.

Prediction for Slope of Tangent Line: \qquad

Move to page 3.1.

2. Given function $\mathbf{f}(x)=x^{3}$, Step size $=0.2$, Point $(1,1)$

Record some of your table of slopes and prediction for the slope of the tangent line.

Prediction for Slope of Tangent Line: \qquad

Press (©tri) and © ©tri) \langle to navigate through the lesson. value of the slope of the secant line and display these slopes on the next page. Determine the value of the slope of the tangent line by examining the list of slopes on the subsequent page.

Slope of Secant Line

解 or why not?

Move to page 4.1.

4. Given function $f(x)=-x^{3}-5 x+3$, Step size $=0.05$, Point $(1,-3)$

Record some of your table of slopes and prediction for the slope of the tangent line.

Prediction for Slope of Tangent Line: \qquad

Slope of Secant Line

5. Do you feel this prediction is more accurate than your prediction from problem 3? Why or why not?

Move to page 5.1.

6. Given function $\mathbf{f}(x)=x^{2}$, Step size $=0.005$, Point $(1,1)$

Record some of your table of slopes and prediction for the slope of the tangent line.

Prediction for Slope of Tangent Line: \qquad

Slope of Secant Line

7. How do the values from this table compare to the values in the table with step size $=0.5$?
8. Does your previous prediction match the prediction with step size $=0.05$?
9. Why do you think step size is an important part of predicting the slope of the tangent line?
10. What step size is needed to be sure that your prediction for the slope of the tangent line is equivalent to the actual slope of the tangent line?

Move to page 6.1.

11. Given function $f(x)=\sin \left(\frac{x}{x-.1}\right)$, Step size $=.005$, Point $(0,0)$

Record some of your table of slopes and prediction for the slope of the tangent line.

Prediction for Slope of Tangent Line: \qquad

Slope of Secant Line

\qquad

Adjust the screen for question 6.1 to match the screen above. Use this new window to predict the value of the slope of the tangent line.
13. Calculate the slope of each secant line and record them in the table.

New Prediction for Slope of Tangent Line: \qquad

Slope of Secant Line

14. How does the new window affect your prediction?
