Algebraic Functions Test 2A

Name

7 8 9 10 11 12

Question: 1

In factorised form: $x^3 - 64 =$

a)
$$(x+4)(x^2+4x+16)$$

b)
$$(x+4)(x^2+4x-16)$$

c)
$$(x-4)(x^2+4x+16)$$

d)
$$(x+4)(x^2-4x-16)$$

e)
$$(x-4)(x^2-4x+16)$$

Question: 2

In factorised form: $x^2 - 6x + 9 - 2xy + 6y =$

a)
$$\left(x + \sqrt{-2x(3y - xy)} - 3\right)\left(x - \sqrt{-2x(3y - xy)} - 3\right)$$

b)
$$x^2 - 2x(y+3) - 3(2y-3)$$

c)
$$2y(x-3)^2(x+3)$$

d)
$$(x-3)(x-2y-3)$$

e)
$$(x+3)(x-2y+3)$$

Question: 3

The sum of the coefficients in the expansion of $(2x+3y)^5$ is equal to:

Question: 4

Given $f(x) = \frac{x^3 + 8}{x - 5} \div \frac{x^2 - 4}{5 - x}$ then f(x) can also be written as:

a)
$$\frac{x^2 - 2x + 4}{2 - x} \quad x \in R$$

b)
$$\frac{-(x^2-2x+4)}{x-2}$$
 $x \in R/x=2$

c)
$$\frac{x^2 - 2x + 4}{2 - x}$$
 $x \in R / x = \{2, 5\}$

d)
$$\frac{x^2 - 2x + 4}{2 - x}$$
 $x \in R / x = \{-2, 2, 5\}$

e)
$$\frac{-(x^2-2x+4)}{x-2}$$
 $x \in R/x = 5$

Question: 5

 $\frac{(n+4)!}{n!}$ is equal to:

a)
$$n(n+1)(n+2)(n+3)$$

b)
$$(n+4)(n+3)(n+2)(n+1)$$

c)
$$n(n+4)(n+3)(n+2)(n+1)$$

e) None of these

[©] Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question: 6

Which one of the following is true for all values of x and y

a)
$$\sqrt{xy} = \sqrt{x}\sqrt{y}$$

$$b) \quad \sqrt{x^2 y^2} = xy$$

c)
$$y(\sqrt{x})^2 = |x|y$$

$$d) \quad x\sqrt{y^2} = x|y|$$

e)
$$\frac{xy}{\sqrt{xy}} = \sqrt{xy}$$

Question: 7

Given $x = 4 - \sqrt{3}$, which one of the following expressions would result in a rational number?

a)
$$x^2 - 4x + 3$$

b)
$$x^2 + 4x + 3$$

c)
$$x^2 - 4x - 3$$

d)
$$x^2$$

e)
$$x^2 - 8x + 27$$

Question: 8

Given that a > b > 0 which one of the following statements is **not** always true:

a)
$$\frac{a^2 - 3ab + 2b^2}{a^2 + ab - 6b^2} = \frac{a - b}{a + 3b}$$

b)
$$\frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab}$$

c)
$$\sqrt{a^2b^2} = ab$$

$$\frac{a^2 - b^2}{a - b} = a + b$$

e)
$$a\sqrt{b} > b\sqrt{a}$$

Question: 9

The set of values: $(-4,8] \cap [-2,12)$ is equivalent to:

a)
$$[-2,8]$$

b)
$$(-4,-2] \cup [8,12)$$

c)
$$(-4,12)$$

d)
$$(-4, -2]$$

e)
$$(-2,8)$$

Question: 10

The sum of the coefficients of $(x+ay)^6$ is equal to 4096. The value of a could be:

- a) -5
- b) 0
- c) 1
- d) 2
- e) 4