

Math Objectives

• Students will find one-sided and two-sided limits graphically.

Vocabulary

limit

About the Lesson

- This lesson involves finding one-sided limits of piecewise functions.
- As a result, students will:
 - Examine a graph of a function.
 - Discuss continuity and limit of a function at a point.

≣ 🚤 TI-Nspire™ Navigator™

- Send a document.
- Use Class Capture to formerly assess students' understanding.
- Use Live Presenter to demonstrate and provide a means for students to share their thinking.
- Use Quick Poll to assess students' understanding.

Activity Materials

Compatible TI Technologies: III TI-Nspire™ CX Handhelds, TI-Nspire™ Apps for iPad®, II-Nspire™ Software

1.1 2.1 2.2 ▶ Basic_Limits	(<mark> </mark> 🗙
Basic Limits	
You will explore several functions and	
answer questions about the limit of the	
functions at various points.	

Tech Tips:

- This activity is appropriate for use with the TI-Nspire family of products, including TI-Nspire handheld, software and TI-Nspire App. Slight variations to these directions may be required if using other technologies besides the handheld.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at
 <u>http://education.ti.com/calcul</u>
 <u>ators/pd/US/Online-</u>
 <u>Learning/Tutorials</u>

Lesson Files:

Student Activity Basic_Limits_Student.pdf Basic_Limits_Student.doc

TI-Nspire document Basic_Limits.tns

Visit <u>www.mathnspired.com</u> for lesson updates.

Discussion Points and Possible Answers

Move to page 2.1.

1. What is the limit of $\mathbf{f}(x)$ as $x \rightarrow 1^+$?

Answer: 0

2. What is the limit of f(x) as $x \rightarrow 1^{-2}$?

Answer: 4

Move to page 3.1.

3. What is the limit of $\mathbf{f}(x)$ as $x \rightarrow -2^+$?

Answer: -1

4. What is the limit of f(x) as $x \rightarrow -2^{-2}$?

Answer: 0

Move to page 4.1.

5. What is the limit of f(x) as $x \rightarrow 3^+$?

Answer: 3

6. What is the limit of f(x) as $x \rightarrow 3^{?}$?

Answer: 3

Move to page 5.1.

7. What is the limit of $\mathbf{f}(x)$ as $x \rightarrow 1^+$?

Answer: 3

8. What is the limit of f(x) as $x \rightarrow 1^{-2}$?

Answer: 3

Move to page 6.1.

9. What is the limit of f(x) as $x \rightarrow 0^{-7}$?

Answer: 0

10. What is the limit of $\mathbf{g}(x)$ as $x \rightarrow 0^+$?

Answer: -1

Move to page 6.3.

Let $\mathbf{h}(x) = \mathbf{g}(x) + 1$. 11. What is the limit of $\mathbf{h}(x)$ as $x \rightarrow 0^+$?

Answer: 1

Move to page 6.4.

12. Define a function $\mathbf{j}(x)$ in terms of $\mathbf{f}(x)$ that makes the graph continuous.

Answer:
$$\mathbf{j}(x) = \begin{cases} -4x - 1, \ x < 0 \\ x^2, \ x \ge 0 \end{cases}$$

Move to page 7.1.

13. Define a function $\mathbf{j}(x)$ in terms of $\mathbf{g}(x)$ that makes the graph continuous.

Answer:
$$\mathbf{j}(x) = \begin{cases} 4, \ x < 1 \\ \sqrt{x-1} + 4, \ x \ge 1 \end{cases}$$

14. Let h(x) = f(x) - c.

What value of *c* makes the limit of h(x) as $x \rightarrow 1^{-} = 2$?

Answer: 2