Exploring Planetary Motion
 by - Diana Lossner

Activity overview
Students will find the best model for the orbits of planets about the sun. Students will practice using the laws of exponents.

Concepts

- Laws of exponents
- Linear regression
- Exponential regression
- Power regression

Step-by-step directions

Open PlanetMotion document on Nspire handheld.

Planets revolve around the sun in elliptical orbits. We want to discover how the distance from the sun affects the planet's period in days compared to the earth's period of 365 days.
(am)
to get to page 2 of your document. You see the lists of distance from the sun in "dist" column and period in the "per" column.

\|1.1 1.2	1.3 2.1 RAD Auto REAL				\square
A dist	B per	C	D	E	F
-					
$1{ }^{1} 92.6$	365				
236	88				
$3 \quad 67.1$	225				
$\begin{array}{ll}4 & 141.7\end{array}$	687				
	4330				\checkmark
A11					

totr to get to the next page. Click on x-axis and put your independent variable there. Click on the y-axis and put your dependent variable there. Sketch your graph. What type of graph do you think it might be? Let's find out for sure. (Dots on graph will change once you put in x - and y-values.

Go back to the previous page and do regressions to see which is best. (menu) 4 (Statistics) (Stat Calculations) 4 (Linear Regression ($\mathrm{a}+\mathrm{bx}$)). Use pull down menus to x List (dist), y List (per); (tab between entries), tab to OK and press enter. Your data will appear in the next columns of your list page. After linear, do exponential and power regression and fill in table below.

Type
Resulting Equation

$$
y=
$$

\qquad
$y=$ \qquad
\qquad

Correlation Coefficient (r)

Linear

Exponential

Power

$$
y=
$$

\qquad

By comparing correlation coefficients, which regression equation fits best?

Look at the regressions on the graph, does one fit better than the others? Is it the same one with the best correlation coefficient?
$y=$ \qquad X

Using algebra and the laws of exponents transform this function into a linear function.

1. Take the In of both sides.
2. Rewrite the right side using a property of logs.
3. Rewrite the right side using another property of logs.
4. Find the In of the number on the right side.

Notice that we have written $\ln y$ as a linear function of $\ln x$.
If the power function is the best fit for the data, we should see a linear relationship from the data if we graph the scatter plot ($\ln x, \ln y$). to get to the next problem. On this spread sheet go to the space next to C and type in "ldist", arrow down, press , type in \ln (dist) and press down, press
tom to get to the next page. Click on x-axis and put your new independent variable there. Click on the y-axis and put your new dependent variable there. Sketch your graph. Does it appear linear? Let's find the linear regression.

Go back to the previous page and do regressions to see which is best. (ment 4 (Statistics) (Stat Calculations) 4 (Linear Regression ($\mathrm{a}+\mathrm{bx}$)). Use pull down menus to x List (ldist), y List (lper); (tab between entries), tab to OK and press enter. Your data will appear in the next columns of your list page.
$\ln y=\ln$ \qquad
$\ln y=\ln$ \qquad + ln \qquad
$\ln y=\ln$ \qquad $+$ \qquad In \qquad
$\ln y=$ \qquad $+$ \qquad In \qquad

Write your linear regression equation. Have you seen these numbers
Slope of line $=$ \qquad

Exploring Planetary Motion

by: Diana Lossner
Grade level: secondary
Subject: mathematics
Statistics
Time required: 45 to 90 minutes
Materials: PlanetMotion.tns
before? What does that tell you?
y-intercept =
\qquad
equation of line: \qquad
Conclusion: If a, x, and y are positive, then the ordered pairs (x, y) are related by th power function if and only if the ordered pairs ($\ln x$, $\ln y$) are related by a linear function. To prove this, let's use algebra:

Using algebra and the laws of exponents transform this function into a linear function.

1. Take the In of both sides.
$\ln y=\ln$ \qquad
2. Rewrite the right side using a property of logs.
3. Rewrite the right side using another property of logs.
$\ln y=\ln$ \qquad $+\ln$ \qquad
$\ln y=\ln$ \qquad $+$ \qquad In \qquad
