Create: Exploring Transformations of a Function Math Nspired

Activity Overview

In this activity, you will create a new document with a Graphs \& Geometry application to explore transformations of an absolute value function. You will use the table feature to examine the effect the transformation has on the coordinates.

Activity Materials

11.11 .2 Exploring_Tr. ion ∇ xा®

Exploring Transformations of a Function

Note: To type capital letters, press the थshift key, then the letter.
3. Press $\operatorname{doc} \boldsymbol{v}>$ File $>$ Save As...

Type: Exploring_Transformations_of_a_Function.

Note: To obtain the underscore, press $\quad \square$.trl $\quad \square$.

Tab to ${ }_{\text {L }}{ }^{\text {save }}$ 」, and press enter.
4. To add a new Graphs page, press ctri docv > Add Graphs.

Step 2: Enter the function into f1 (x).

1. The cursor should be in the function entry line at the bottom of the screen.
2. To graph $\mathbf{f 1}(x)=|x|$, type: \mathbf{A} B $\mathbf{S}, \mathbf{x})$ enter .

Note: You can also access the absolute value template by pressing the $10\left[\mathbb{l f}_{0}\right.$ key.

Step 3: Change the attributes of the graph to create a dashed

 line.1. To change the attributes, move the cursor near the graph until the cursor becomes a pointed finger (${ }^{\rho^{m}}$) and the graph turns bold.
2. Press ctril menu > Attributes. A drop-down menu appears. Select the third line style in the second row of attributes by pressing \geqslant so that "(3/3) Line style is dashed" appears. Press enter. Move the cursor away from the graph.

Step 4: Enter a second function into $\mathbf{f}(\boldsymbol{x})$.

1. Press tab to move the cursor to the function entry line for $\mathbf{f} 2(x)$.

Note: You may also click the chevron (シ) or press ©tril \mathbf{G} to display and/or hide the function entry line.

3. To move the function labels, move the cursor until it hovers over one of the labels. The word "label" appears and the cursor turns
 Move the function label to an open space near the bottom left of the screen and press . Repeat for the other function label.

Note: An alternate method of selecting an object is to press and hold when the cursor is an open hand is.

Step 5: Insert a table into a split screen layout.

1. To insert a table, press ctrl \boldsymbol{T}.
2. Notice that we cannot see the values of $\mathbf{f} \mathbf{2}(x)$ in the second column. To view these values, in the next step we will adjust the widths of the two parts of the split screen.

Step 6: Adjust the widths of the split screen.

1. Press doc $>$ Page Layout $>$ Custom Split.
2. The message "Use + or - to choose a layout" appears for a moment, which allows you to toggle between a horizontal or vertical split. You may test this feature now if you wish, but a vertical split is the preferred view for this lesson.
3. To change the widths of the two parts of the screen, press \langle or \rangle. In this case, press $\mathbf{<}$ a few times until you can read the values in the $\mathbf{f} \mathbf{2}(x)$ column.
4. Press enter.

Step 7: Edit the function in f 2 and observe the graph and table.

1. Use the tab key to highlight the top of the table. Then use the \checkmark keys to select the cell containing $3 \cdot \mathrm{abs}(x)$.

Note: You can also use the touchpad mouse to click on that cell.
2. To edit the expression, select Menu > Table > Edit Expression, or you may double-click the cell. Redefine $\mathbf{f 2}(x)$ as $-3 \cdot|x|$.
3. This action will be repeated again by the students to redefine $\mathbf{f} 2(x)$ as each of the following: $2 \cdot|x|, 1 \cdot|x|-2$, and $1 \cdot|x|+1$.

Step 8: Save the document

1. Redefine $\mathbf{f} \mathbf{2}(x)$ back to its original definition, $\mathbf{f} \mathbf{2}(x)=-3 \cdot|x|$.
2. Press ctrl to save the document.

