
Topic 3.14 Polar Function Graphs

Practice Problem 1

The polar function $r = f(\theta)$, for $0 \le \theta \le 2\pi$, is given by $f(\theta) = 4 - 3\sin(\theta)$ Which of the following describes the limaçon?

- A. The limaçon has an inner loop.
- B. The limaçon is a cardioid.
- C. The limaçon has a dimpled shape and has an appearance of a kidney bean.
- D. The limaçon is convex and has an appearance of nearly circular.

Practice Problem 2

The graph of the polar function $r = f(\theta)$, where $f(\theta) = 3 + 6cos(\theta)$, is shown in the polar coordinate system for $0 \le \theta \le 2\pi$. The inner loop of the limaçon corresponds to the values of θ in the interval $c < \theta < d$. What are the values of c and d?

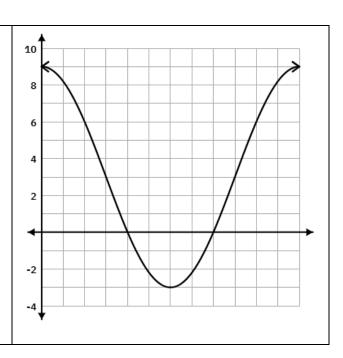
A.
$$c = \frac{2\pi}{3}$$
 and $d = \frac{4\pi}{3}$

B.
$$c = \frac{\pi}{3}$$
 and $d = \frac{5\pi}{3}$

C.
$$c = \frac{\pi}{6}$$
 and $d = \frac{5\pi}{6}$

D.
$$c = \frac{7\pi}{6}$$
 and $d = \frac{11\pi}{6}$

Solutions:


C. The limaçon has a dimpled shape and has an appearance of a kidney bean.

The ratio of a to b is $\frac{4}{3}$. A limaçon in which the ratio of a and b is between 1 and 2 results in a dimpled shape or, it may be described as a kidney bean shape.

Practice Problem 2 Solution:

A.
$$c = \frac{2\pi}{3}$$
 and $d = \frac{4\pi}{3}$

The graph of the corresponding sinusoidal function f(x)=3+6sin(x) shown to the right has gridline spacing of $\frac{\pi}{6}$ on the interval $[0,2\pi]$. The sinusoidal function has negative *y*-values on the interval $\left(\frac{2\pi}{3},\frac{4\pi}{3}\right)$. The negative *y*-values on the sinusoidal function correspond to the negative *r*-values of the polar function and those values create the inner loop.

**Note: This activity has been developed independently by Texas Instruments. AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Policies subject to change. Visit www.collegeboard.org.