\qquad
Class \qquad

Part 1 - Draw A Tangent Line by Hand

On the graph to the right, draw a line tangent to $y=x^{2}$ in the first quadrant.

- Approximate the slope of the line. Show your work.
- Write the equation of your line.

Part 2 - Draw and Explore Tangent Line with Technology

Press 1 ron and select New Document. (Unless you want to save what you are working on, arrow over to "No" and press enter.)

Select Add Graphs by using arrows and pressing enter.
Graph the equation $y=x^{2}$ in $\mathbf{f 1}$ by pressing \boldsymbol{x} 造enter.
Draw a tangent line on the graph in the first quadrant. Select MENU > Geometry > Points \& Lines > Tangent. Then use the TouchPad to move the cursor and click 圈 the curve.

Zoom in and observe the behavior. Press MENU > Window/Zoom > Zoom - In. A magnifying glass with a plus sign will appear. Position this over the point of tangency and press enter. You have zoomed in by a factor of 2 . Press enter a few more times over that point.

- Write your observation of how your tangent line and the graph $\mathbf{f 1}(x)=x^{2}$ compare when examined close up.
- Conjecture - Will this type of behavior occur for all other functions? Explain your reasoning.

You may want to try it for another function. You can choose your own or try $\mathbf{f} \mathbf{2}(x)=\sin (x)$ on

Part 3 - Graph a piecewise function to explore local linearity

A function is said to be linear over an interval (i.e. locally linear over a small interval) if the slope is constant. Let's discover if all functions have a constant slope when they are examined in a small enough interval.
To graph $y=\left\{\begin{array}{l}x^{2}, x<2 \\ 2 x, x \geq 2\end{array}\right.$, first insert another Graph page.
The piecewise function template can be found by pressing ${ }^{[10 f f 0}$. Arrow over to select the 2-piece piecewise function template and press enter. Then, press $x x^{2}$
 2 enter.
Discover if all functions have the property of local linearity by zooming in on the point $(2,4)$. This point is called a cusp.

- Explain your observations. Use words like "slope" and "local linearity" to explain if, in the neighborhood of (2, 4), the function becomes one straight line. (You can use MENU > Window/Zoom > Window Settings to ensure that your zoomed-in window contains (2, 4).)

Part 4 - Graph another piecewise function

To explore if all piecewise functions lack the property of local linearity, on a new Graphs page zoom in on $(2,4)$ of the function $f(x)=\left\{\begin{array}{ll}x^{2} & , x<2 \\ 4 x-4, x \geq 2\end{array}\right.$.

- Does this function appear to be locally linear in the neighborhood of (2, 4)? Compare and contrast this function to the one graphed and explored in Problem 3.

Part 5 - Conclusion

You know the definition of slope is $\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. For the function $f(x)$, this can be written as $\frac{\Delta f}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$. If you were finding the slope of function in the interval of a repeatedly zoomed in graph, describe what happens to $\Delta x=x_{2}-x_{1}$.

