Questing for Trig

Leanne Hankins
TI-Nspire FastTrack
July 22-27 Purple Group

This lesson is geared towards students in Algebra 1 and
Geometry as an introduction to the 3 basic trig ratios (sine
cosine θ, tangent θ)

Plan about 50 to 70 minutes to complete the lesson.
Your students should have basic understanding of how to:
Math: Calculate decimal values of ratios
Identify parts of right triangles
Solve for the missing piece of the Pythagorean
Theorem
TI-Nspire: Create \& use formulas in "List \&Spreadsheets"
Perform manual data captures.
Load "Geo_TrigBasics_Hankins.tns" from
"My Documents"
Save a document as "Geo_date_FirstName"

Students will need a TI-Nspire handheld \& scratch paper to complete the activity

Lesson Notes:

This activity is student driven. The students need to have the activity on their TI-Nspire and paper for computations and comparisons

Teachers may want to offer an expansion of the lesson to introduce and explore solving problems with trigonometric ratios including angle of elevation and depression.

Review Pythagorean Theorem as a part of the lesson introduction. Read through pages $1.1 \& 1.2$ with your students and discuss elements of the drawing on page 1.3 befre releasing the students to work individually (i.e. - if you shoot a deer, the arrow will not hit the deer at the ground).

Remind students that ctrr needs tobe used to collect data in this activity.

Student Slides

\section*{| 1.1 | 1.2 | 1.3 | 1.4 | Peg auto real |
| :--- | :--- | :--- | :--- | :--- |}

Hunter Fred is placing his tree stand for bow season. The tree Fred is hunting deer (Bambi) from makes a right angle with the ground. How can he maximize his hunting ground from the placement of his tree stand? How can he use math to solve his problem?

Put your answer in column Con the next page and put the Pythagorean Theorem in column D (grey box)

1.3	1.4	1.5	2.1	Deg auto real

Now that you have found some distances that the arrow must travel to collect dinner, how can we use fractions to make those calculations easier?

Lets look at some ratios that might help us find these missing pieces.

Use ratios to compare the distance to $\quad \stackrel{\rightharpoonup}{5 \mathrm{ft}}$
Bambi to the distance the arrow travels.
Put the results into column C and
ratio in column D on following page.

2.4	3.1	3.2	3.3	DEG AUTO REAL	
Q Use this space for calculations	Done				
1					

\section*{| 4.1 | 4.2 | 4.3 | 5.1 | DEG AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |}

Now that we have looked at the ratios that affect Fred's quest for dinner, let's look at how one angle could affect the hunting trip.

The most important angle in Fred's quest for dinner is the angle at the ground. Investigate now Bambi's distance from Fred changes the angle.

| 4.2 | 4.3 | 5.1 | 5.2 | DEG AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | Click on Bambi's point (B) to see how $\stackrel{\stackrel{5 \mathrm{ft}}{ }}{\text { and }}$ changing the distance from the tree will affect the angle between the arrow's

| 5.1 | 5.2 | 5.3 | 6.1 | DEG AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | Mathematicians use three basic trigonometric ratios to find distances in right triangles. These trig ratios are $\operatorname{sine} \theta(\sin \theta), \operatorname{cosine} \theta$ $(\cos \theta)$, and $\operatorname{tangent} \theta(\tan \theta)$

Using the information from the following spreadsheet and the ratios from Problems 2, $3, \& 4$, see if you can decide which ratio goes with each trigonometric ratio

6.1	6.2	6.3	6.4	DEG AUTO REAL
Question				
Which fraction set fits each trigonomtric ratio?				
Answer				
$\sin \theta=$ $\cos \theta=$ $\tan \theta=$				

Sample Answer Screen Shots

| 1.1 | 1.2 | 1.3 | 1.4 | Deg auto real |
| :--- | :--- | :--- | :--- | :--- | :--- | Hunter Fred's Quest for Diner

Ren

\section*{| 1.1 | 1.2 | 1.3 | 1.4 | DEG AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- |}

1.1	1.2	13	1.4 Deg auto	REAL
Hunter Fred's Quest for Dinner				
	Save As...			
For F.	Save In: File Name:		Block4 $\quad \nabla$	
			Geo July26 LeanneH	
This e discov			OK	Cancet

Hunter Fred is placing his tree stand for bow season. The tree Fred is hunting deer (Bambi) from makes a right angle with the ground. How can he maximize his hunting ground from the placement of his tree stand? How can he use math to solve his problem?

Remember to save your work copy now.

1.2 1.3	$1.4{ }^{1.5}$	Peg aut	to Real	
A a	B b	c_{c}	D check	
- =captur	=capture		$=\sqrt{ }\left(\mathrm{a} \square^{\wedge} 2+\mathrm{b}\right.$	
64.2505	21.7544	67.8335	67.8334	
53.7500	21.7544	57.9855	57.9855	
35.7509	21.7544		41.8495	
20.5015	21.7544		29.8925	
12.5225	21.7544		25.1011	
6				
D1 $\mid=67.833449998041$				

1.3	1.4	1.5	2.1	DEEG AUTO REAL

Now that you have found some distances that the arrow must travel to collect dinner, how can we use fractions to make those calculations easier?

Lets look at some ratios that might help us find these missing pieces.

| 1.4 | 1.5 | 2.1 | 2.2 | DEG AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | Use ratios to compare the height of the tree stand to the distance

the arrow travels. Put the results into
column C and the ratio in column D
on following page.

$$
\frac{\log B}{}
$$

arrow=56 6000 ft

2.1	2.2	2.3	2.4	DEG AUTO REAL

© Use this space for calculations.	Done
$\frac{21.7544}{6}$.3421
$\frac{63.5915}{}$.3152
$\frac{21.7544}{69.0181}$.3844
$\frac{21.7544}{56.6}$	
1	$4 / 99$

42.12 .2		deg auto	Real	
A b	${ }^{\text {B C }}$	$C^{\text {ratio }}$	D check	E
- =captured	=capture ($=1 \mathrm{~b} /{ }^{\prime} \mathrm{c}$	
21.7544	63.5915	. 3421	. 3421	
$2 \quad 21.7544$	69.0181	. 3152	. 3152	
$3 \quad 21.7544$	56.6000	. 3844	. 3844	
$4 \quad 21.7544$	45.3142		. 4801	
$5 \quad 21.7544$	31.3010		. 6950	
$6 \bigcirc 217501$	277835		938	
D1 $\mid=34209540074239$				

2.2	2.3	2.4	3.1	DEG AUTO REAL
Use ratios to compare the distance to	$\stackrel{\square}{5 \mathrm{ft}}$			

Put the results into column C and
ratio in column D on following page

42.3	3.13 .2	deg auto		-
A a	B C	$C_{\text {ratio }}$	D check	E
- =capture'	= captures'			
64.0044	67.6004			
62.0020	65.7077			
$3 \quad 57$	61.0103	-		
451.5055	55.9112			
542.3239	47.5874			
6 ararar	-17.587			v
A1 $1=64.00439438039$				

42.43	3.23 .3	deg auto	Real	-
A a	B_{C}	$C_{\text {ratio }}$	D check	E
* =capturec	=capturec'			
64.0044	67.6004	4.9468		
262.0020	65.7077	. 9436		
$3 \quad 57$	61.0103	. 9343		
$4 \quad 51.5055$	55.9112			
$5 \quad 42.3239$	47.5874			
$6 \quad 35.2535$	11-975a			\checkmark
C41				

2.43	3.23 .3	deg auto	Real	-
A a	${ }^{\text {c }} \mathrm{C}$	$C_{\text {ratio }}$	D check	
- =capturec	= capture ${ }^{\text {c }}$		$=1{ }^{\text {a }}$ ' C	
64.0044	67.6004	. 9468	. 9468	
$2{ }^{2} 62.0020$	65.7077	. 9436	. 9436	
57	61.0103	. 9343	. 9343	
$4 \quad 51.5055$	55.9112		. 9212	
$5 \quad 42.3239$	47.5874		. 8894	
$6 \quad 35.2535$	14750		2510	
D11 $=.94680492822518$				

3.3	4.1	4.2	4.3
DEG AUTO REAL			
O Use this space for calculations	Done		
$\frac{21.7544}{64.2505}$.3386	
$\frac{21.7544}{60.7546}$.3581	
$\frac{21.7544}{56}$			

A b	B a	C ratio	D check	-
- =capturer	= capture ${ }^{\prime}$		='b/'a	
21.7544	64.2505	. 3386	. 3386	
21.7544	60.7546	. 3581	. 3581	
$3 \quad 21.7544$	56	. 3885	. 3885	
$4 \quad 21.7544$	47.7507		. 4556	
$5 \quad 21.7544$	29		. 7502	
$6 \quad 217540$	200\%		81	v
D1 $\mid=.33858661157541$				

\section*{| 5.1 | 5.2 | 5.3 | 6.1 | DEG AUTO REAL |
| :---: | :---: | :---: | :---: | :--- | :--- |}

Mathematicians use three basic trigonometric ratios to find distances in right triangles. These trig ratios are sine $\theta(\sin \theta)$, cosine θ $(\cos \theta)$, and $\operatorname{tangent} \theta(\tan \theta)$.

Using the information from the following spreadsheet and the ratios from Problems 2, $3, \& 4$, see if you can decide which ratio goes with each trigonometric ratio

4.1	4.2	4.3	5.1	DEG auto real

Now that we have looked at the ratios that affect Fred's quest for dinner, let's look at how one angle could affect the hunting trip.

The most important angle in Fred's quest for dinner is the angle at the ground. Investigate how Bambi's distance from Fred changes the angle.

6.1	6.2	6.3	6.4	DEG AUTO REAL
Question				
Which fraction set fits each trigonomtric ratio?				
Answer				
$\sin \theta=$ legB/arrow $\cos \theta=$ legA/arrow $\tan \theta=$ legB/legA	\begin{tabular}{\|l	l	}	
\hline
\end{tabular} | | | |

