Time required

45 minutes

The Trigonometric Derivative

ID: 9289

Activity Overview

In this activity, students will derive the derivative of the functions y = sin(x), y = cos(x), and y = tan(x), and work with the derivative of both y = sin(u) and y = cos(u). In the process, the students will determine that $\lim_{h\to 0} \frac{\cos(h) - 1}{h} = 0$.

Topic: Formal Differentiation

- Use Limit to show $\lim_{h\to 0} \frac{\sin(a+h) \sin(a)}{h} = \cos(a)$ and verify the rule for differentiating
 - $f(x) = \sin(x)$.
- Use Limit to show $\lim_{h \to 0} \frac{\cos(a+h) \cos(a)}{h} = -\sin(a)$ and verify the rule for differentiating

 $f(x) = \cos(x)$.

 Use Derivative to verify the Generalized Rules for differentiating the sine and cosine functions.

Teacher Preparation and Notes

- This investigation derives the definition of the derivative of y = sin(x), y = cos(x). The students should be familiar with keystrokes for the Limit command, the Derivative command, entering all the trigonometric functions, and setting up and displaying a table.
- The trigonometric identities for $sin(a + b) = sin(a) \cdot cos(b) + sin(b) \cdot cos(a)$ as well as • $\cos(a+b) = \cos(a) \cdot \cos(b) - \sin(a) \cdot \sin(b)$ are used in the derivation. In addition, $\lim_{h \to 0} \frac{\sin(h)}{h} = 1$ will be used.

- The calculator should be set in radian mode before the derivatives are taken. •
- Before starting this activity, students should go to the home screen and select **F6:Clean Up > 2:NewProb**, then press [ENTER]. This will clear any stored variables, turn off any functions and plots, and clear the drawing and home screens.
- To download the student worksheet, go to education.ti.com/exchange and enter "9289" in the keyword search box.

Associated Materials

TrigonometricDerivative_Student.doc

Problem 1 – Derivative of the Sine Function

Students are to use the definition of derivative to set up the limit of sin(x). The identity for the sine of the sum of two angles $sin(a + b) = sin(a) \cdot cos(b) + sin(b) \cdot cos(a)$ is needed to simply the limit. You may want to review the identity with students first.

$$f'(a) = \lim_{h \to 0} \frac{\sin(a+h) - \sin(a)}{h}$$
 def of derivative
$$= \lim_{h \to 0} \frac{\sin(a) \cdot \cos(h) - \sin(h) \cdot \cos(a) - \sin(a)}{h}$$
 substitute trig identity
$$= \lim_{h \to 0} \frac{\sin(a) \cdot (\cos(h) - 1) - \sin(h) \cdot \cos(a)}{h}$$
 combine like terms
$$= \lim_{h \to 0} \frac{\sin(a) \cdot (\cos(h) - 1)}{h} + \lim_{h \to 0} \frac{\sin(h) \cdot \cos(a)}{h}$$
 split into two limits

In the first limit, $\lim_{h\to 0} \frac{\cos(h) - 1}{h}$ needs to be determined since substitution gives $\frac{0}{0}$.

For the second limit, recall that $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$.

Students will then use the **table set** command to generate a table of values for $y = \frac{\cos(x) - 1}{x}$. with

x = -0.1 and $\Delta x = 0.025$.

The undefined at x = 0 reflects that the ratio has a zero in the denominator. However, the table indicates that values are tending toward zero.

Students will support this conclusion by using the Limit command F3:Calc>3:Limit.

F1+ F2 (13) (15) (15) (15) (15) (15) (15) (15) (15				
Х	y1			
05	.02499			
025	.0125			
0.	undef			
.025	0125			
.05	025			
x=1.05				
MAIN	RAD AUTI	O FUNI		

Now students will substitute $\lim_{h \to 0} \frac{\cos(h) - 1}{h} = 0$ and $\lim_{h \to 0} \frac{\sin(h)}{h} = 1$ into the limit they set up

$$f'(a) = \lim_{h \to 0} \frac{\sin(a+h) - \sin(a)}{h}$$
$$= \lim_{h \to 0} \frac{\sin(a) \cdot (\cos(h) - 1)}{h} + \lim_{h \to 0} \frac{\sin(h) \cdot \cos(a)}{h}$$
$$= \sin(a) \cdot 0 + 1 \cdot \cos(a)$$
$$= \cos(a)$$

To confirm this, student can use the Limit command and Derivative command.

F1+ F Tools A19:	2+ F3+ F4+ 2braCalcOtherP	FS r9mi0(C1e	F6+ an Up
= <u>d</u> (≤	in(x))		cos(x)
d(sin)	(x),x)	FUNC	1./20

Problem 2 – Derivative of the Cosine Function

In this problem, students will use the definition of derivative to set up a limit to find the derivative of $f(x) = \cos(x)$. They will need to use the trigonometric identity $\cos(a + b) = \cos(a) \cdot \cos(b) - \sin(a) \cdot \sin(b)$.

$$f'(a) = \lim_{h \to 0} \frac{\cos(a+h) - \cos(a)}{h}$$
$$= \lim_{h \to 0} \frac{\cos(a) \cdot \cos(h) - \sin(a) \cdot \sin(h) - \cos(a)}{h}$$
$$= \lim_{h \to 0} \frac{\cos(a) \cdot (\cos(h) - 1) - \sin(a) \cdot \sin(h)}{h}$$
$$= \lim_{h \to 0} \frac{\cos(a) \cdot (\cos(h) - 1)}{h} - \lim_{h \to 0} \frac{\sin(a) \cdot \sin(h)}{h}$$
$$= \cos(a) \cdot 0 + 1 \cdot \sin(a)$$
$$= -\sin(a)$$

Students can verify their answers by using the Limit command and Derivative command.

F1+ F2+ Too1s A19ebi	raCalcOther	FS FI Pr9mI0(Clea	іт n Шр
$=\frac{d}{d\times}(\cos \theta)$	s(x))	-:	sin(x)
d(cos(x Main),×) RAD AUTO	FUNC	1/30

Problem 4– Derivative of the Tangent Function

In this problem, students will write $tan(x) = \frac{sin(x)}{cos(x)}$ and use the quotient rule to find the derivative of tangent:

F1+ F2+ F3+ F4+ ToolsAl9ebraCalcOther	F5 F6+ Pr9ml0Clean Up	
$= \frac{d}{d} (t \operatorname{sp}(y))$	1	
	$(\cos(x))^2$	
d(tan(x),x)		
Note: Domain of result may be lar9er		

$$\frac{d}{dx}\left(\frac{\sin(x)}{\cos(x)}\right) = \frac{\cos(x) \cdot \frac{d}{dx}(\sin(x)) - \sin(x) \cdot \frac{d}{dx}(\cos(x))}{\cos^2(x)}$$
$$= \frac{\cos(x) \cdot \cos(x) - \sin(x) \cdot (-\sin(x))}{\cos^2(x)}$$
$$= \frac{\cos^2(x) + \sin^2(x)}{(\cos(x))^2}$$
$$= \frac{1}{\cos^2(x)}$$

Students will confirm this result using the Derivative command. Written in terms of the reciprocal function, the derivative of the tangent is $\frac{dy}{dx} \tan(x) = \sec^2(x)$.

Extension – Derivative of y = sin(u) and y = cos(u)

Students are to use the chain rule for both the sine and cosine functions. They can use the **Derivative** command for the first set and it will give the result at the right.

$$y = \sin(u) \rightarrow \frac{dy}{dx} = \cos(u) \cdot \frac{du}{dx}$$
$$y = \cos(u) \rightarrow \frac{dy}{dx} = -\sin(u) \cdot \frac{du}{dx}$$
$$f(x) = \sin(12x) \rightarrow f'(x) = 12\cos(12x)$$
$$g(x) = \cos(5x) \rightarrow g'(x) = -5\sin(5x)$$

Students are to then use the **Derivative** command for sin(u) and cos(u). Remind them to use u(x) for u.

$$\frac{d}{dx}\sin(u(x)) = \cos(u(x)) \cdot \frac{d}{dx}u(x)$$
$$\frac{d}{dx}\cos(u(x)) = -\sin(u(x)) \cdot \frac{d}{dx}u(x)$$

Finally, students will find the derivative of the functions below. Remind them to use the parentheses so that the trigonometric function is raised to the power.

$$h(x) = \sin^{3}(4x) \to h'(x) = 12\sin^{2}(4x) \cdot \cos(4x)$$
$$j(x) = \cos^{7}(3x) \to j'(x) = -21\sin(3x) \cdot \cos^{6}(3x)$$

F1+ F2+ ToolsA19eb	F3+ F4+ raCalcOther	FS F6 Pr9mI0C1ea	
∎ <u>α</u> (si	n(12+x))		
		12·cos((12·x)
$=\frac{d}{d\times}(co$	s(5·x))	-5∙sir	n(5·×)
d(cos(5	x),x)		
MAIN	RAD AUTO	FUNC	2/30

$$\begin{array}{c} \hline F_{1+} & F_{2+} & F_{3-} & F_{4+} & F_{5-} & F_{6+} \\ \hline Tools[A13ebra[Calc][ather]Pr3mt[]Clean UP] \\ & cos(u(x)) \cdot \frac{d}{dx}(u(x)) \\ \bullet & \frac{d}{dx}(cos(u(x))) \\ & -sin(u(x)) \cdot \frac{d}{dx}(u(x)) \\ \hline & \frac{d(cos(u(x)), x)]}{dx} \\ \hline & \frac{d(cos(u(x)), x)]}{MAIN} & \underline{FUNC} & \underline{F_{4+}} & F_{5-}^{5-} & F_{6+}^{5-} \\ \hline & 12 \cdot (sin(4 \cdot x))^2 \cdot cos(4 \cdot x) \\ \bullet & \frac{d}{dx} ((cos(3 \cdot x))^7) \\ \hline & \frac{-21 \cdot sin(3 \cdot x) \cdot (cos(3 \cdot x))^6}{d((cos(3 \cdot x))^7, x)} \\ \hline & \underline{MAIN} & \underline{FUNC} & \underline{F_{4+}} & \underline{F_{5-}} \\ \hline \end{array}$$