

Introduction of the Fundamental Theorem

ID: 9778

Time required 45 minutes

Activity Overview

This activity builds student comprehension of functions defined by a definite integral, where the independent variable is an upper limit of integration. Students are led to the brink of a discovery

of a discovery of the Fundamental Theorem of Calculus, that $\frac{d}{dx} \int_{0}^{x} f(t)dt = f(x)$.

Topic: Fundamental Theorem of Calculus

- Graph a function and use Measurement > Integral to estimate the area under the curve in a given interval.
- Use Integral (in the Calculus menu) to obtain the exact value of a definite integral.

Teacher Preparation and Notes

- This investigation should follow coverage of the definition of a definite integral, and the relationship between the integral of a function and the area of a region bounded by the graph of a function and the x-axis.
- Before doing this activity, students should understand that if a < b and f(x) > 0, then:

$$\circ \int_a^b f(x) > 0$$

$$\circ \int_{a}^{b} -f(x) < 0$$

$$\circ \int_{0}^{a} f(x) < 0$$

$$\circ \int_{b}^{a} -f(x) > 0$$

- Before starting this activity, students should go to the HOME screen and select
 F6:Clean Up > 2:NewProb, then press ENTER. This will clear any stored variables.
- To download the student worksheet, go to education.ti.com/exchange and enter "9778" in the keyword search box.

Associated Materials

FundamentalTheorem Student.doc

Suggested Related Activities

To download any activity listed, go to <u>education.ti.com/exchange</u> and enter the number in the keyword search box.

- Sum Rectangles (TI-89 Titanium) 12099
- Exploring the Fundamental Theorem of Calculus (TI-Nspire CAS technology) 9205

Problem 1 - Constant Integrand

Students explore the function $\int_0^x 1.5 dt$. They should notice that there is a constant rate of change in the graph of $f(x) = \int_0^x 1.5 dt$. This rate of change is 1.5.

1. The table looks like the one below.

x	$\int_0^x 1.5 dt$	
1	1.5	
2	3	
3	4.5	
4	6	
5	7.5	

- 2. $\int_0^0 1.5 dt = 0$; There is zero area under the graph of y = 1.5 from x = 0 to x = 0.
- **3.** 1.5 units
- **4.** The graph will be a line through the origin with slope 1.5.

Students will enter their data into the lists and then view the graph of $\left(x, \int_0^x 0.5 dt\right)$.

- 5. A line; yes (student answers may vary)
- **6.** The same as before, except the slope would be 0.5 instead of 1.5.

Problem 2 – Non-Constant Integrand

Students investigate the behavior of $f(x) = \int_0^x \frac{t}{2} dt$. Students should note that this function changes at a non-constant rate and are asked to explain why this is so (from a geometric point of view).

х	$\int_0^x \frac{t}{2} dt$
1	0.25
2	1
3	2.25
4	4
5	6.25

F1+ F2+ Tools A19eb	ra F3+ F4+ ra Ca1c Other P	F5 Y9MID	F6+ C1ean Up	
$-\int_{0}^{\times} \left(\frac{\mathbf{t}}{2}\right)$			-	$\frac{x^2}{4}$
$\bullet \int_0^1 \left(\frac{\mathbf{t}}{2}\right)$]at		:	1/4
f(t/2,t)	,0,1)			
MAIN	RAD AUTO	FUN	IC 2	/30

- **8.** $\int_0^0 \frac{t}{2} dt = 0$. The height and the length of the triangle are 0 so the area is 0.
- **9.** The area changes by a different amount each time because both the height and width are increasing.
- **10.** The graph is not linear. It is a parabola as seen by the formula in the above screen shot.

Problem 3 – An Integrand That Changes Sign

х	$\int_{0}^{x} \frac{t^2 - 13t + 22}{9} dt$	
1	95/54 = 1.76	
2	62/27 = 2.29	
3	11/6 = 1.83	
4	16/27 = 0.59	
5	−65/54 = −1.20	
6	-10/3 = -3.33	
7	−301/54 = −5.57	
8	− 208/27 = − 7.70	
9	-19/2 = -9.50	
10	-290/27 = -10.74	
11	−605/54 = −11.20	
12	−32/3 = −10.67	
13	-481/54 = -8.91	
14	−154/27 = −5.70	

The fractions are approximated to the nearest hundredth.

- **11.** After x = 2, the integral value begins to decrease.
- **12.** The values for x in which the integral decreases are 2 < x < 11; the function is negative.
- **13.** The values for which the integral is increasing are x < 2, x > 11; the function is positive.
- **14.** The table seems to indicate x = 11. To find out for sure, use **fMin** on the integral. You have to restrict the domain to x > 0, to get the answer.
- 15. Yes, we have seen a similar situation. The minimum occurs on a function where the function stops decreasing and starts increasing.

