Introduction of the Fundamental Theorem

ID: 9778

Activity Overview

This activity builds student comprehension of functions defined by a definite integral, where the independent variable is an upper limit of integration. Students are led to the brink of a discovery of a discovery of the Fundamental Theorem of Calculus, that $\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)$.

Topic: Fundamental Theorem of Calculus

- Graph a function and use Measurement > Integral to estimate the area under the curve in a given interval.
- Use Integral (in the Calculus menu) to obtain the exact value of a definite integral.

Teacher Preparation and Notes

- This investigation should follow coverage of the definition of a definite integral, and the relationship between the integral of a function and the area of a region bounded by the graph of a function and the x-axis.
- Before doing this activity, students should understand that if $a<b$ and $f(x)>0$, then:
- $\int_{a}^{b} f(x)>0$
- $\int_{a}^{b}-f(x)<0$
- $\int_{b}^{a} f(x)<0$
- $\int_{b}^{a}-f(x)>0$
- Before starting this activity, students should go to the HOME screen and select F6:Clean Up > 2:NewProb, then press ENTER. This will clear any stored variables.
- To download the student worksheet, go to education.ti.com/exchange and enter "9778" in the keyword search box.

Associated Materials

- FundamentalTheorem_Student.doc

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Sum Rectangles (TI-89 Titanium) - 12099
- Exploring the Fundamental Theorem of Calculus (TI-Nspire CAS technology) - 9205

Problem 1 - Constant Integrand

Students explore the function $\int_{0}^{x} 1.5 d t$. They should notice that there is a constant rate of change in the graph of $f(x)=\int_{0}^{x} 1.5 d t$. This rate of change is 1.5.

1. The table looks like the one below.

x	$\int_{0}^{x} 1.5 d t$
1	1.5
2	3
3	4.5
4	6
5	7.5

2. $\int_{0}^{0} 1.5 d t=0$; There is zero area under the graph of $y=1.5$ from $x=0$ to $x=0$.
3. 1.5 units
4. The graph will be a line through the origin with slope 1.5.

Students will enter their data into the lists and then view the graph of $\left(x, \int_{0}^{x} 0.5 d t\right)$.
5. A line; yes (student answers may vary)
6. The same as before, except the slope would be 0.5 instead of 1.5 .

Problem 2 - Non-Constant Integrand

Students investigate the behavior of $f(x)=\int_{0}^{x} \frac{t}{2} d t$. Students should note that this function changes at a non-constant rate and are asked to explain why this is so (from a geometric point of view).

\boldsymbol{x}	$\int_{0} \boldsymbol{x} \frac{\boldsymbol{2}}{\mathbf{2}} \boldsymbol{d t}$
1	0.25
2	1
3	2.25
4	4
5	6.25

F17		
- $\int \frac{x}{0}\left(\frac{t}{2}\right) d^{t}$		$\frac{x^{2}}{4}$
$=\int \frac{1}{0}\left(\frac{t}{2}\right) d t$		$1 / 4$
S $\left.\mathrm{t}_{2} / 2, t, 0,1\right)$		
MAlk	FINAT:	$2{ }^{2} 20$

8. $\int_{0}^{0} \frac{t}{2} d t=0$. The height and the length of the triangle are 0 so the area is 0 .
9. The area changes by a different amount each time because both the height and width are increasing.
10. The graph is not linear. It is a parabola as seen by the formula in the above screen shot.

Problem 3 - An Integrand That Changes Sign

\boldsymbol{x}	$\int_{0}^{x} \frac{t^{2}-\mathbf{1 3 t}+\mathbf{2 2}}{\mathbf{9}} d \boldsymbol{t}$
1	$95 / 54=1.76$
2	$62 / 27=2.29$
3	$11 / 6=1.83$
4	$16 / 27=0.59$
5	$-65 / 54=-1.20$
6	$-10 / 3=-3.33$
7	$-301 / 54=-5.57$
8	$-19 / 2=-9.50$
10	$-290 / 27=-10.74$
11	$-605 / 54=-11.20$
12	$-32 / 3=-10.67$
13	$-481 / 54=-8.91$
14	$-154 / 27=-5.70$

The fractions are approximated to the nearest hundredth.
11. After $x=2$, the integral value begins to decrease.
12. The values for x in which the integral decreases are $2<x<11$; the function is negative.
13. The values for which the integral is increasing are $x<2, x>11$; the function is positive.
14. The table seems to indicate $x=11$. To find out for sure, use fMin on the integral. You have to restrict the domain to $x>0$, to get the answer.
15. Yes, we have seen a similar situation. The minimum occurs on a function where the function stops decreasing and starts increasing.

