

Exploring Polynomials—Factors, Roots, and Zeros

Name ____

Student Activity

Class _____

Open the TI-Nspire document Exploring_Polynomials_Factors_Roots_and_Zeros.tns.

This activity examines the connections between the roots or zeros of a polynomial equation and the *x*-intercepts of the graph of the polynomial function. It also looks at how the graph of the function can help identify the factors of the equation.

4 1.1 1.2 2.1 ▶ *Exploring_rev DE	G 📋	X
Algebra 2		
Exploring Polynomials -		
Factors, Roots, and Zeros		
Use the sliders on the next page to chang	е	
the values of a , b , c , and d .		

Move to page 1.2.

- 1. Using the sliders, set $y_1 = 1x + 1$ and $y_2 = 1x 2$. Observe that the graph of $y_1 = 1x + 1$ appears to cross the *x*-axis at x = -1. When x = -1, $y_1 = 0$ because -1 + 1 = 0. x = -1 is called a *zero* or *root* of the function $y_1 = 1x + 1$.
 - a. Where does the graph of $y_2 = 1x 2$ appear to cross the x-axis?
 - b. Write a simple equation to verify that this value of x is a zero of y_2 .
 - c. When $y_1 = 1x + 1$ and $y_2 = 1x 2$, what is the function y_3 ?
 - d. The graph of y_3 is a parabola. How many times does the graph of y_3 cross the x-axis?
 - e. What are the zeros of y_3 ?
 - f. Factor y_3 .

Polynomials—Factors, Roots, and Zeros

Student Activity

Class ____

g. Given the information below, use the sliders to fill in the rest of the table:

y 1	y ₂	Zeros of y_1 y_2		y ₃	Zeros of y ₃	Factors of y ₃
(x + 4)	(x + 3)					
				$2x^2 + 0x - 8$		
						(x-5)(-1x-2)
(3x + 3)			-4			
					-1 and 4	
						(2x+4)(3x-3)

- h. Write a conjecture about the relationship between the zeros of the linear functions and the zeros of the quadratic function.
- i. How do the factors of the quadratic equation relate to the zeros of the function?

Move to page 2.2.

- 2. Use the sliders to make f1 = 1x + 4, f2 = 1x + 2, and f3 = x 1. Observe that the graphs of each appear to cross the *x*-axis at -4, -2, and 1, respectively.
 - a. Verify algebraically that each is a zero of each linear function.
 - b. When f1 = 1x + 4, f2 = 1x + 2, and f3 = x 1, what is f4?
 - c. How many times does f4 cross the x-axis and where?

Polynomials—Factors, Roots, and Zeros

Class _____

- d. Show that the multiplication of the factors of f1, f2, and f3 equal f4.
- e. Try other slider values and make a conjecture about the relationship between the zeros of the linear equations and the zeros of the cubic function.
- 3. Use the sliders to make f1 = x + 4, f2 = x + 2, and f3 = x + 2.
 - a. How has the graph changed? The value –2 is called a double root.
 - b. Change f1 = 1x + 2. How has the graph changed?
- 4. Use the sliders to make f1 = 3x 3, f2 = x + 1, and f3 = x 2.
 - a. Observe the graph and identify the zeros. What is f4?
 - b. Now change the sliders to make f1 = x 1, f2 = x + 1, and f3 = x 2. Observe the graph. What are the zeros? What is f4?
 - c. Identify similarities and differences between the sets of equations in 4a and 4b.