Special Cases of the Product Rule

Student Activity

7 8 9 10 11 12

Introduction

If f(x) and g(x) are both differentiable functions, then their product f(x)g(x) is also differentiable, and using the product rule then:

$$\left(f(x)g(x)\right)' = \frac{d}{dx}\left(f(x)g(x)\right) = f'(x)g(x) + f(x)g'(x) = g(x)\frac{d}{dx}\left(f(x)\right) + f(x)\frac{d}{dx}\left(g(x)\right)$$

In this activity we will meet examples of functions that also satisfy (f(x)g(x))' = f'(x)g'(x) and examine and explore the patterns in the resulting differentials.

PART 1

Question: 1.

- a) Consider the functions f(x) = -(x+1) and $g(x) = \frac{1}{x}$, show that (f(x)g(x))' = f'(x)g'(x)
- b) Change f(x) slightly so that f(x) = x + 1 and check if it still satisfies: (f(x)g(x))' = f'(x)g'(x)

Question: 2.

- a) Consider the functions $f(x) = (x+2)^2$ and $g(x) = \frac{1}{x^2}$, show that (f(x)g(x))' = f'(x)g'(x)
- b) Change f(x) slightly so that f(x) = x + 2 and check if it still satisfies: (f(x)g(x))' = f'(x)g'(x)

Question: 3.

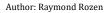
- a) Consider the functions $f(x) = -(x+3)^3$ and $g(x) = \frac{1}{x^3}$, show that (f(x)g(x))' = f'(x)g'(x)
- b) Change f(x) slightly such that $f(x) = (x+a)^3$, determine the value for a such that it satisfies the condition: (f(x)g(x))' = f'(x)g'(x)

Question: 4.

Consider the functions $f(x) = -(1)^n (x+n)^n$ and $g(x) = \frac{1}{x^n}$, use CAS to verify (f(x)g(x))' = f'(x)g'(x)For the cases when n = 4 and n = 5.

Question: 5.

Consider the functions $f(x) = (x+10)^{10}$ and $g(x) = \frac{1}{x^{10}}$, use CAS to verify (f(x)g(x))' = f'(x)g'(x)Can you predict the general result? Hint use a slider for n.



PART 2

Question: 6.

Consider the functions $f(x) = \frac{1}{1-x}$ where $x \in R \setminus \{1\}$ and g(x) = x, show that (f(x)g(x))' = f'(x)g'(x)

Question: 7.

Consider
$$f(x) = \frac{1}{(2-x)^2}$$
 where $x \in R \setminus \{2\}$ and $g(x) = x^2$, show that $(f(x)g(x))' = f'(x)g'(x)$

Question: 8.

Consider
$$f(x) = \frac{1}{(3-x)^3}$$
 where $x \in R \setminus \{3\}$ and $g(x) = x^3$, show that $(f(x)g(x))' = f'(x)g'(x)$

Question: 9.

Consider
$$f(x) = \frac{1}{(b-x)^m}$$
 where $x \in R \setminus \{b\}$ and $g(x) = x^n$, given that $(f(x)g(x))' = f'(x)g'(x)$

Express both b and m in terms of n.

Hence write generalised sets of functions f(x) and g(x) which satisfy (f(x)g(x))' = f'(x)g'(x),

If
$$f(x) = \frac{1}{(10-x)^{10}}$$
 where $x \in R \setminus \{10\}$ and $g(x) = x^{10}$ can you predict $(f(x)g(x))' = f'(x)g'(x)$.

Using your conjecture is it true for non-integer values of *n*? Prove your conjecture in general.

PART 3

Question: 10.

Consider the two non-constants functions f(x) and g(x), where $g(x) \neq g'(x)$ if

$$(f(x)g(x))' = f'(x)g'(x)$$
 then show that $\frac{f'(x)}{f(x)} = \frac{g'(x)}{g'(x) - g(x)}$

Question: 11.

Consider the case when $g(x) = e^{kx}$, $k \in R \setminus \{1\}$, solve the differential equation in Question 10 and hence find a function f(x) which satisfies (f(x)g(x))' = f'(x)g'(x).

Question: 12.

Can you find other sets of functions for example non-polynomial functions f(x) and g(x), for example trigonometric exponential or logarithmic functions f(x) and g(x) which satisfy (f(x)g(x))' = f'(x)g'(x) Generalize your results.

© Texas Instruments 2025. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: Raymond Rozen

