Pledge Plans: An Exploration of Linearity

By: Blake VanWinkle and Justin Ellis

Activity overview

1. Connect the concept of linearity with real-world contexts.
2. Use a table to organize information.
3. Make a graph to display data using correct labels and scales.
4. Recognize the relationship among the table, the graph, the equation, and the slope of the line.
5. Identify the y-intercept from a graph or a table.

Concepts:

TN Algebra 1 Standards
Course Level Expectation:
CLE 3102.1.4 Move flexibly between multiple representations (contextual, physical, written, verbal, iconic/pictorial, graphical, tabular, and symbolic), to solve problems, to model mathematical ideas, and to communicate solution strategies.
3102.1.13 Change from one representation of a relation to another representation; for example, change from a verbal description to a graph.
3102.1.19 Recognize and practice appropriate use of technology in representations and in problem solving.
3102.3.20 Understand that a linear equation has a constant rate of change called slope and represent slope in various forms.
3102.4.1 Using algebraic expressions solve for measures in geometric figures as well as for perimeter, area, and volume.
3102.5.1 Identify patterns or trends in data.
3102.5.8 Examine real-world graphical relationships (including scatter plots) to determine type of relationship (linear or nonlinear) and any association (positive, negative, or none) between the variable of the data set.
3102.5.9 Determine an equation for a line that fits real-world linear data; interpret the meaning of the slope and y-intercept in context of the data.
3102.5.11 Use an equation that fits the data to make a prediction.

SPI 3102.1.1 Interpret patterns found in sequences, tables, and other forms of quantitative information using variables or function notation.
SPI 3102.1.2 Write an equation symbolically to express a contextual problem.

Teacher Preparation

Before the activity the teacher should pre-load the activity file Pledge Plans.tns on to the devices via the Navigator System or by using link cables with the handhelds.

Classroom management tips

1. The students can complete this activity using the Pledge Plans file on their TI-Nspire handhelds.
2. This activity is intended to be completed independently by the students.
3. Student should be familiar with the TI-Nspire technology prior to activity.

TI-Nspire Applications

- Notes
- Lists \& Spreadsheets
- Data \& Statistics

Step-by-step directions

Steps:

1. From the home screen choose My Documents and navigate to the appropriate folder containing Pledge Plans.tns file.
2. Page 1.1 is the title page for the activity. Use ctrl key and the arrows to navigate through the activity.

3. Page 1.4 introduces the Problem of the activity. Students are prompt to finish the table on Page 1.6 with a calculation page on Page 1.7.

1.2	1.3	1.4	*Pledge Plths \sim
to pledge money for a walkathon. Jeff thinks			
that $\$ 1.50$ per kilometer would be an			
appropriate pledge. Rachel suggests $\$ 2.50$			
per kilometer because it would bring in more			
money. Annie says that if they ask for too			
much money, people won't agree to be			
sponsors; she suggests that they ask for a			
donation of $\$ 4.00$ and then $\$ 0.75$ per			
kilometer.			

4. The table on Page 1.6 can be completed manually or utilize the gray formula boxes.

4.4 1.5 ${ }^{A}$ distance		$\begin{aligned} & 1.6 \\ & \mathrm{e}^{\mathbf{B}_{\text {jef }}} \end{aligned}$	*Pledge Plans			x	
		$\mathrm{C}_{\text {rachel }}$	$\mathrm{D}_{\text {annie }}$		슨		
-							
11							
$2 \quad 2$							
3							
4							
A1	1				4	4	-

5. Go to Page 1.9 for the graph and then click in the areas at the bottom and left portions of the screen to add the variables that you wish to graph.

6. Between Page 1.11 - Page 1.18 , students will answer various questions concerning the problem.

	8
Question	슷
Write an equation that models Annie's pledge plan. Allow m to represent money owed. Allowd to represent distance walked.	
Answer $\quad \triangleq$	

7. Page 1.19 is a notification that the students should go back and reflect on the table, graph, and equation. Students should answer the question on Page 1.20 after reflecting.

Assessment and Evaluation

The teacher can collect student files using Connect-To-Class software or TINspire Computer Link software.

Sample Answers to questions in Pledge Plans.tns file.
Q: In your own words, describe the relationship between money earned and distance walked for Jeff's pledge plan.
A: Jeff's plan earns $\$ 1.50$ per kilometer walked.
Q: Write an equation that models Jeff's pledge plan. Allow m to represent money owed. Allow d to represent distance walked.
A: $m=1.5 d$
Q: In your own words, describe the relationship between money earned and distance walked for Rachel's pledge plan.
A: Rachel's plan earns $\$ 2.50$ per kilometer walked.
Q: Write an equation that models Rachel's pledge plan. Allow m to represent money owed. Allow d to represent distance walked.
A: $m=2.5 d$
Q: In your own words, describe the relationship between money earned and distance walked for Annie's pledge plan.
A: Annie's plan earns a minimum of $\$ 4.00$ with $\$ 0.75$ per kilometer walked.
Q: Write an equation that models Annie's pledge plan. Allow m to represent money owed. Allow d to represent distance walked.
A: $m=4+.75 d$
Q: How does increasing the amount of pledge per kilometer affect the amount of money earned to the table?
A: By increasing the amount of pledge per kilometer increases the amount of money earned all together.
Q: How does increasing the amount of pledge per kilometer affect the amount of money earned to the graph and equation?
A: By increasing the amount of pledge per kilometer makes for a steeper graph and a larger slope in the equations.
Q: In your own words, describe what is different about Annie's plan. What causes it to cross the other plans' graphs?
A: It has a higher initial value with a lower slope.

Student TI-Nspire Document

Pledge Plans.tns

1.1	1.2	1.3	*Pledge Plans ∇
and nonlinear functions.			
Check for understanding 0806.3 .9 Given a			
function rule, create a tablet of values for x			
and y, and plot graphs of nonlinear functions.			
SPI 0806.7.7 Identify, compare, and contrast			
functions as linear or nonlinear.			

1.1	1.2	1.3
nonlinear) and any association (positive,		
negative, or none) between the bariable of the		
data set.		
3102.5 .9 Determine an equation for a line that		
fits real-world linear data; interpret the		
meaning of the slope and y-intercept in		
context of the data.		
3102.5.11 Use an equation that fits the data		
to make a prediction.		

Grade Level: 8
Subject: Algebra
Time Required: 45 to 90 minutes

1.3	1.4	1.5
Make a table showing the amount of money a		
sponsor would owe under each of the pledge		
plans on page 1.6 .		
Page 1.7 will be available for any		
calculations.		

Time Required: 45 to 90 minutes

19]1.20 1.21 》 *Please Plans \square	80]

This activity was adapted from Navigating Through Algebra in Grades 6-8, a publication from the National Council of Teachers of Mathematics Navigation Series.

This activity was adapted from Navigating Through Algebra in Grades 6-8, a publication from the National Council of Teachers of Mathematics Navigation Series.

