Linear Alchemy

Student Activity

7 8 9 10 11 12

TI-Nspire™

Investigation

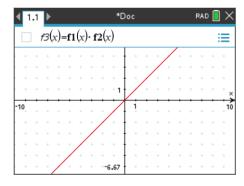
Student

50 mii

Calculator Instructions: Linear Factors

Create a new TI-Nspire file and insert a Graphs application.

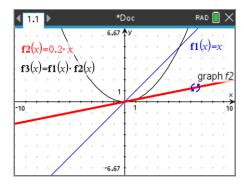
Navigate to the equation entry line and enter the following functions:


$$f_1(x) = x$$

$$f_2(x) = x$$

$$f_3(x) = f_1(x)f_2(x)$$

Note: The graph of $f_3(x)$ is not shown opposite.

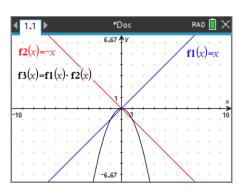

Graph 1 and 2 are directly on top of one another which is why you will only see one graph, rest assured, the second graph is there.

Question: 1.

Explain the shape of Graph $f_3(x)$.

Place the mouse over graph $f_2(x)$ and rotate the graph around the origin.

When multiple objects are in one area, a tool tip will be displayed. The 'tip' should state "graph f2". You can use the TAB key to toggle between the different layers.

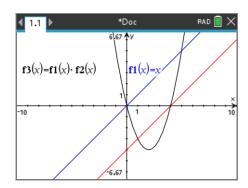

Question: 2.

In the screen show opposite:

$$f_1(x) = x$$

$$f_2(x) = -x$$

What is the equation for $f_3(x)$?

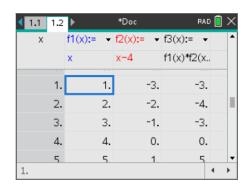


Place the mouse over $f_2(x)$ and rotate the graph to its original position.

The graph of $f_2(x)$ needs to be translated as shown opposite, the x and y axes intercepts are both integer values.

Translations can be performed by grabbing a point close to the centre of the graph. The mouse will appear as a double arrow: \$\ddot\delta\$ alternatively, double click on the relevant graph and type the equation directly.

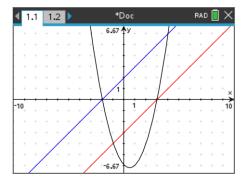
You can use ctrl + Z to "undo" previous transformations and ctrl + Y to "re-do" them.


Question: 3.

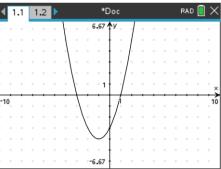
In the calculator screen shot above, given that: $f_1(x) = x$ what are the equations for $f_2(x)$ and $f_3(x)$?

Press ctrl + T to generate a table of values for all three graphs.

You can also press etri + 6 to ungroup the Graph application from the table, this will shift the table to the next page.

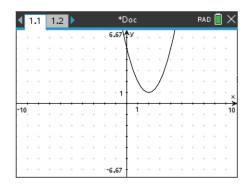

Use the arrow keys to navigate up / down / left / right through the table.

Question: 4.


With reference to the table, what do you notice about the x axis intercepts for $f_1(x)$, $f_2(x)$ and $f_3(x)$?

In the graph shown opposite, given $f_2(x)=x-3$, determine possible equations for $f_1(x)$ and $f_3(x)$ given they have integer axes intercepts.

Question: 5.

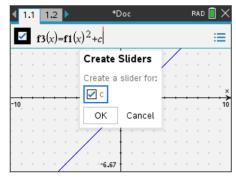

In the graph shown opposite $f_1(x)$ and $f_2(x)$ have been hidden, suggest a possible function for each given $f_3(x)$.

Question: 6.

Explain why $f_3(x)$ cannot be formed by two linear factors.

Think about numbers that have factors (composite) and numbers that don't (prime). Just like prime numbers, we cannot express the graph in Question 7 as the product of two linear factors. A prime number (p) however could be expressed as a composite number (n) squared plus some constant (c).

Example: $29 = 5^2 + 4$.

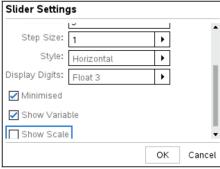

We can do the same for the graph in Question 7.

Re-write $f_3(x)$ as shown opposite:

$$f_3(x) = f_1(x)^2 + c$$

As 'c' is not defined you will be prompted to add a slider.

In this section we are not using $f_2(x)$ so it can be hidden or deleted.


The default version of the slider can be changed to a 'toggle' by minimising. Move the mouse over the top of the slider and press:

Change the following:

Minimised = checked

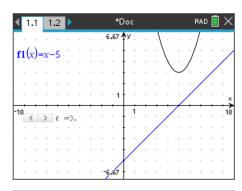
Step size = 1


Show Scale = unchecked

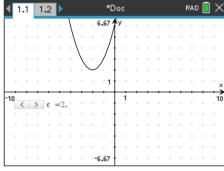
Experiment with the following:

- Rotate the linear function
- Translate the linear function
- Increase and decrease the slider value (c)

For each 'experiment', observe closely what is happening with the parabola.



Author: P. Fox


Question: 7.

The linear function: $f_1(x)=x-5$ and the constant (slider) are used to generate the graph of $f_3(x)$ such that: $f_3(x)=f_1(x)^2+c$. Determine the equation for $f_3(x)$.


Question: 8.

In the screen shot shown opposite, the graph of $f_1(x)$ has been hidden. Suggest a possible equation for $\ f_3(x)$

Question: 9.

In the screen shot shown opposite, the slider has been hidden. Suggest two possible equations for $f_3(x)$

