

ALGEBRA II ACTIVITY 5:

 What Is The Inverse Of A Function?
ACTIVITY OVERVIEW:

In this activity we will

- Use Draw Inverse to examine the inverse for a function.
- Compare the graphs of the original function and its inverse to $y=x$.
- Enter the result of finding the inverse symbolically in the $Y=$ register to verify it.
- Use braces to enter the positive and negative square root to graph the inverse of a quadratic function.

Press $\boxed{Y} \widehat{X, T, \Theta, n}$ to graph the parent linear function.

FOTDS MEMORY
2: 200 mm
3:
4: ${ }^{\text {decimal }}$
-3 2 Square G: 5 Standard
7+2Tri9

Press GRAPH.	
Next you will direct the calculator to draw the inverse for $y=2 x-3$. To access the DRAW menu, press 2nd PRGM. Select 8: DrawInv. This will paste the command to the home screen.	```DETHID FOINTS STO 5 TTangent 6: Dr abF 7:Shade``` ```9:Circlé 6: Text A: Pen```
Press VARS ${ }^{\square}$ to \mathbf{Y}-VARS. Select 1:Function... then select 2: \mathbf{Y}_{2}.	DrawInv Yz■
Press ENTER. Examine the inverse. What is the relationship between $y=2 x-3$ and its inverse?	
Find the inverse of $y=2 x-3$ by switching y and x and solving for y. Enter the result into \mathbf{Y}_{3}. Then left arrow in front of \mathbf{Y}_{3} and press ENTER to change the line to a thick line.	

Press GRAPH. Observe whether \mathbf{Y}_{3} graphs over the result from Draw Inverse. If it does not trace over, revisit your steps in solving for y above.

Repeat the steps above to examine the inverse of another function as shown.

Press GRAPH. Examine the graph. Predict what the graph of the inverse will look like. Then press 2nd MODE. This will take you to the home screen. Press Znd ENTER. This will recall the command to Draw Inverse. Press ENTER.

Press ENTER.

Find the inverse symbolically. Enter the result into \mathbf{Y}_{3}. Then left arrow in front of \mathbf{Y}_{3} and press ENTER to change the line to a thick line.

Last, find the inverse for $\mathrm{y}=(\mathrm{x}+3)^{2}-4$.

A student may come up with the result shown.

However, when graphed over the graph from Draw Inverse it is clear that the equation in $\mathbf{Y}_{\mathbf{3}}$ only accounts for half of the graph.

To graph the inverse you need both the positive and negative square root to achieve the proper result. Use the braces as shown (by pressing 2nd \square).

Press GRAPH. In this instance the inverse itself is not a function.

