Resolving Vectors - ID: 9899

By Charles W. Eaker

Time required
30 minutes

Topic: Kinematics

- Graphically resolve a vector into perpendicular components.
- Resolve a vector into perpendicular components using the sine and cosine functions.

Activity Overview

In this activity, students observe the relationship between a vector and its x -and y -components. Students determine the magnitudes and directions of the x - and y -components through direct measurement and through the use of the sine and cosine functions. Students also learn how to resolve a vector into perpendicular (but not necessarily horizontal and vertical) components.

Materials

To complete this activity, each student will require the following:

- TI-Nspire ${ }^{\text {TM }}$ technology
- pen or pencil
- blank sheet of paper

TI-Nspire Applications
Notes, Graphs \& Geometry

Teacher Preparation

Before carrying out this activity, review vectors, sine and cosine functions, and the Pythagorean theorem with students.

- The screenshots on pages 2-4 demonstrate expected student results. Refer to the screenshots on pages 5 and 6 for a preview of the student TI-Nspire document (.tns file).
- To download the .tns file, go to education.ti.com/exchange and enter "9899" in the search box.

Classroom Management

- This activity is designed to be teacher-led with students following along on their handhelds. You may use the following pages to present the material to the class and encourage discussion. Note that the majority of the ideas and concepts are presented only in this document, so you should make sure to cover all the material necessary for students to comprehend the concepts.
- Students may answer the questions posed in the .tns file using the Notes application or on blank paper.
- In some cases, these instructions are specific to those students using TI-Nspire handheld devices, but the activity can easily be done using TI-Nspire computer software.

The following questions will guide student exploration in this activity:

- How can a vector be resolved into x - and y-components geometrically?
- What trigonometric functions can be used to determine the components of a vector?
- Can a vector be resolved into components other than the x - and y-components? In problem 1, students vary the magnitude and direction of a vector and observe the changes in the x - and y-components of the vector. They use the Pythagorean theorem to show the relationship between the length of the vector and the components. They also use trigonometric functions to determine the x - and y-components and use TI-Nspire graphing tools to construct the x - and y-components of a given vector. In problem 2, students are presented a mass on an inclined plane. They use TI-Nspire tools to construct the components of the gravitational force vector that are parallel and perpendicular to the inclined plane.

Problem 1 - The x - and y-components of a vector

Step 1: Students should open the file
PhyAct_9899_ResolvingVectors.tns. After reading the first two pages, students should move to page 1.3, which shows a vector (v) and its x - and y-components ($v x$ and $v y$, respectively). Students should use the Length Measurement tool (Menu > Measurement > Length) to measure the length of vector v. They should grab the open point at the end of vector v and vary the magnitude and direction of the vector. Then, they should answer questions 1 and 2.

Q1. What is the relationship between the length of vector v and the lengths of components $v x$ and $v y$?
A. The square of the length of v is equal to the sum of the squares of the lengths of vx and vy ($\left.\left|v^{2}\right|=\left|v x^{2}\right|+\left|v y^{2}\right|\right)$. If students struggle with this, point out that v, vx, and vy form a right triangle, with v as the hypotenuse. Remind them of the equation relating the length of the hypotenuse to the lengths of the two sides of a right triangle (the Pythagorean theorem). Encourage students to test this relationship by varying the direction and magnitude of v and observing the results.

Q2. What is the relationship between the direction of vector v and the signs of $v x$ and $v y$?
A. When v points from left to right, vx is positive; vx is negative when v points from right to left. When v points up, vy is positive; when v points down, vy is negative.

Step 2: Next, students should move to page 1.5, which again shows vectors $v, v x$, and $v y$. This simulation also shows the length of vector v and the angle (θ) between v and $v x$. Students should use this simulation to determine the relationship between the magnitude of vector v and the magnitudes of its x - and y-components using trigonometric functions. Students should use the Text tool (Menu > Actions > Text) to enter the expressions $a \cdot \cos b$ and $a \cdot \sin b$ in text boxes on the page. They should then use the Calculate tool (Menu > Actions > Calculate) to determine the values of these two expressions for the vectors shown on the screen. (They should use the magnitude of v for a and the value of θ for b in each expression.) Then, they should answer question 3.

Q3. What are the relationships between the magnitude of vector v, angle θ, and the magnitudes of components $v x$ and $v y$?
A. Students should compare the values calculated for the two expressions with the lengths of vx and vy. The correct relationships are given below:
$|v x|=|v| \cos \theta$
$|v y|=|v| \sin \theta$
Step 3: Next, students should read page 1.7 before moving to page 1.8, which contains a Graphs \& Geometry page with vector t on it. Students should construct the x - and y-components of vector $t(t x$ and $t y$, respectively) on this page. Students should use the Parallel tool (Menu > Construction >Parallel) to construct lines parallel to the x - and y-axes that pass through the endpoints of the vector.

Step 4: Then, they should use the Intersection Point tool (Menu > Points \& Lines > Intersection Point(s)) to find the intersection of the two lines they constructed in step 3. Students can now use the Vector tool (Menu > Points \& Lines > Vector) to construct the vectors $t x$ and $t y$. The Length tool gives the magnitudes of $t, t x$, and $t y$.

Q4. Determine the length of vector t and the magnitudes of $t x$ and $t y$.
A. Students should use the Length Measurement tool to measure the lengths of t , tx , and ty. For this simulation, $|t|=21.558,|t x|=19.873$, and $|t y|=8.354$. If you wish and time allows, you may have students confirm that the relationships they derived in steps 1 and 2 hold for this situation.

Problem 2 - Parallel and perpendicular vector components

Step 1: Next, students should read page 2.1 and then move to page 2.2. Page 2.2 shows a box resting on an inclined plane. The weight of the box is represented by vector w. Students should use the Parallel, Perpendicular, Intersection Point(s), and Vector tools to construct the components of w that are parallel and perpendicular to the inclined plane (wpar and wperp, respectively). Then, they should answer questions 5-7.

Q5. Determine the lengths of vectors w, wpar, and wperp.
A. Students should use the Length Measurement tool to measure the lengths of w, wpar, and wperp. For this simulation, $|w|=12.145$, \mid wpar $\mid=5.624$, and \mid wperp $\mid=11.069$.

Q6. Do these vectors obey the relationships you derived in problem 1? Explain your answer.
A. The vectors should obey the same relationships (i.e., $\left|w^{2}\right|=\left|w p a r^{2}\right|+\left|w p e r p^{2}\right|$; $|w p a r|=|w| \cos \theta$; and $|w p e r p|=|w| \sin \theta)$. If you wish and time allows, you may have students carry out further constructions and calculations to verify these relationships. It may also be useful for students to determine the relationship between wpar and the angle of the incline (relative to the horizontal).
Q7. Under what general conditions do the relationships you derived in problem 1 apply?
A. The relationships derived in problem 1 apply to any vector that is resolved into two perpendicular vectors. Encourage student discussion of this concept.

Resolving Vectors - ID: 9899

(Student)TI-Nspire File: PhyAct_9899_ResolvingVectors.tns

1.4 1.5 1.6 1.7 DEG AUTO REAL	4	1.6 1.7 1.8	G AUTO REAL	\square
On the next page is vector t. Use the TI-Nspire graph tools (Parallel, Intersection Point(s), and Segment) to construct the line segments corresponding to the components $t x$ and $t y$. (You may want to hide the lines parallel to the x - and y-axes after the intersection point is determined.)			y	
	20		2	20
		-14.75		

| 1.6 | 1.7 | 1.8 | 1.9 |
| :--- | :--- | :--- | :--- | | 4. Determine the length of vector t and the |
| :--- | :--- |
| magnitudes of $t x$ and $t y$. |

\section*{| 1.7 | 1.8 | 1.9 | 2.1 |
| :---: | :---: | :---: | :---: |}

The following page illustrates a box on an inclined plane. The vertical vector w corresponds to the weight of the box. In this case we are interested in the components of w that are parallel and perpendicular to the inclined plane (wpar and wperp, respectively). Use the TI-Nspire graph tools to construct these components.

1.8	1.9	2.1	2.2	DEG AUTO REAL

cls,

1.9	2.1	2.2	2.3	DEG AUTO REAL

5. Determine the lengths of vectors w, wpar, and wperp.
6. Do these vectors obey the relationships you derived in problem 1? Explain your answer.

