Press Y= and enter **X**² for Y₁ and **X**² + 3 for Y₂ to match the screen at the right.

Press [2nd] [TABLE] and observe the differences between the values of Y1 and Y2. Experiment with other values besides 3.

- 1. How do the values in the Y₂ column compare to the values in the Y_1 column as you experiment with other values other than 3?
- 2. How do you think the graph will change for positive values used in Y2? Negative values?

To test your conjecture, start the Transformational Graphing application by pressing <u>APPS</u> and select **Transfrm.**

Now, press Y= and enter $X^2 + C$ to match the screen at the right.

Press $\boxed{200M}$ and select **ZStandard** to get the graph displayed in a normal window. Notice that the variable *C* is listed to the left along with the equation.

Experiment with different values of *C* as well as with different functions such as X^3 and X^4 .

When you are done experimenting, exit the Transformational Graphing Application by pressing [APPS], selecting **Transfrm** and choosing **uninstall**.

3. How does the graph change for positive values of C? Negative values of C?

Ploti Plot2	P1ot3
NY1∎X2	
\Y2 8 X2+3	
\Ŷ3=	
NÝ4=	
∖Ýs=	
∖Ýs=	
l∖Ýž=	

Name _____

Class _____

Problem $1 - f(x) \rightarrow f(x) + C$

W Transformers

Problem 2 – $f(x) \rightarrow f(x-B)$

Press Y= and enter X^2 for Y1 and $(X-3)^2$ for Y2 to match the screen at the right.

Press [2nd] [TABLE] and observe the differences between the values of Y1 and Y2. Experiment with other values besides 3.

- **4.** How do the values in the Y₂ column compare to the values in the Y₁ column as you experiment with other values other than 3?
- 5. How do you think the graph will change for positive values used in Y2? Negative values?

Start the Transformational Graphing application.

Press Y= and enter $(X-B)^2$ to match the screen at the right.

Press (GRAPH). Experiment with different values of *B* as well as with different functions such as X^3 and X^4 .

6. How does the graph change for positive values of *B*? Negative values of *B*?

Problem $3 - f(x) \rightarrow A^*f(x)$

Press Y= and enter X^2 for Y1 and $3X^2$ for Y2 to match the screen to the right.

Press 2nd [TABLE] and observe the differences between the values of Y1 and Y2. Experiment with other values besides 3.

B. B. L. B. B.

P. 9 . 6 .

6.2.64

Transformers

- **7.** How do the values in the Y₂ column compare to the values in the Y₂ column as you experiment with other values other than 3?
- 8. How do you think the graph will change for positive values used in Y2? Negative values?

Start the Transformational Graphing application.

Press $\boxed{Y=}$ and enter AX^2 to match the screen at the right.

Press GRAPH. Experiment with different values of A as well as with different functions such as X^3 and X^4 .

9. How does the graph change for positive values of *A*? Negative values of *A*?

Problem 4 – f(a*x)

Press Y= and enter X^2 for Y1 and $(3X)^2$ for Y2 to match the screen to the right.

Press [2nd] [TABLE] and observe the differences between the values of Y1 and Y2. Experiment with other values besides 3.

10. How do the values in the Y₂ column compare to the values in the Y₁ column as you experiment with other values other than 3?

11. How do you think the graph will change for positive values used in Y2? Negative values?

Ploti Plot2 Plot3

Transformers

Start the Transformational Graphing application.

Press Y= and enter $(AX)^2$ to match the screen at the right.

Press GRAPH. Experiment with different values of A as well as with different functions such as X^3 and X^4 .

Plot1 Plot2 Plot3
MY18(HX24
MY2=
MY3=
MÝ4=
MÝŚ=
MÝs=
MV2=

12. How does the graph change for positive values of A? Negative values of A?

Problem 5

- 1. What kind of transformation is $f(x) = x^2 2$?
- 2. The function $f(x) = x^5$ will get closer to the *y*-axis under the transformation $p(x) \rightarrow a^* p(x)$?
 - □ True □ False
- 3. Describe the change in the graph from $f(x) = x^3$ for the function $f(x) = (x 2)^3 + 3$?
- 4. Describe the transformation for $f(x) = x^4$ to $g(x) = 16x^4$.
- 5. Describe the transformation for $f(x) = x^3$ to $g(x) = x^3 + 3x^2 + 3x + 1$.
- 6. Write an equation for that transforms the graph of x^3 down 3 units and right 2 units.
- 7. Write an equation that reflects the graph of x^2 over the *x*-axis.