\qquad
\qquad

Problem 1 - Determinants

On page 1.3, study the matrix and the determinant. Change an entry in the matrix and observe how the determinant changes. Continue to do this until you can establish a rule for finding the determinant of a two-by-two matrix.

- What is your rule?

Move to page 1.5 and find $\operatorname{det}\left[\begin{array}{cc}-1 & 5 \\ 6 & 8\end{array}\right]$, first by using the rule, and second, by using the det(command, followed by the matrix. You can find templates for matrices above the multiplication key (ctirl + [ifit $)$.

- Create a matrix that has a determinant of 0 .
- Create a matrix that has a determinant of 1.
- Create a matrix that has a determinant of $\frac{1}{2}$.

Problem 2 - Cramer's Rule

For a system of two equations written in standard form, $\left\{\begin{array}{l}a_{1} x+b_{1} y=c_{1} \\ a_{2} x+b_{2} y=c_{2}\end{array}\right.$, the
solution of the system is (x, y) where $x=\frac{\operatorname{det}\left[\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right]}{D}, y=\frac{\operatorname{det}\left[\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right]}{D}$, and
D is the determinant of the coefficient matrix, $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$.

Move to page 2.2 and use Cramer's Rule to find the solution of $\left\{\begin{array}{l}-x+2 y=10 \\ 3 x+4 y=-4\end{array}\right.$.

- What is D ?
- What is the numerator of x ?
- What is the numerator of y ?
- What is the solution to the system?

Move to page 3.2 and use Cramer's Rule to find the solution of $\left\{\begin{array}{l}-3 x+2 y=8 \\ -3 x+2 y=12\end{array}\right.$.

- What is D ?
- What is the numerator of x ?
- What is the numerator of y ?
- What is the solution to the system?

Move to page 4.2 and use Cramer's Rule to find the solution of $\left\{\begin{array}{l}4 x-2 y=8 \\ 8 x-4 y=16\end{array}\right.$.

- What is D ?
- What is the numerator of x ?
- What is the numerator of y ?
- What is the solution to the system?
- How can you use Cramer's Rule to tell if a system of linear equations has one, zero, or infinitely many solutions?

