Calculate

Answers + Teacher Notes

Student

Introduction

Programs can be used to complete single or multiple calculations.
It is assumed that you have completed Unit 1 Programming Basics - Skill Builder 2
You may return to the Skill Builder exercise at any time to review the instructions.

Display

Start a new document and create a program titled:
Babylon

Use a and b as the variables and enter the line of code shown opposite, make sure a decimal point (.) follows the 2.

When you have finished use Ctrl +B to compile and save the program. Insert a calculator application and run your program.

Babylon(95,10)

${ }^{4.1}{ }^{1.1} \text { babylon }{ }^{* D o c \nabla}$	
$\begin{aligned} & \text { Define babyloo }(a, b)= \\ & \begin{array}{l} \text { Prgm } \\ \text { disp }(a / b+b) / 2, \\ \text { EndPrgm } \end{array} \end{aligned}$	

Question: 1.
Write down the output of the program when 95 and 10 are entered as the values.
Answer: babylon $(95,10)=9.75$

Question: 2.

Run the program again as: Babylon(95,\#) where \# represents the value calculated in Question 1.
Answer: babylon(95,9.75) $=9.7467948718$

The previous answer contains a lot of decimal places. You can copy $(\mathrm{Ctrl}+\mathrm{C})$ and paste $(\mathrm{Ctrl}+\mathrm{V})$ the entire answer into the appropriate section.

Question: 3.
Run the program again as: Babylon(95, \#) where \# represents the value calculated in Question 2.
Answer: babylon($95,9.7467948718$) $=9.74679434481$
Question: 4.
What do you notice about the answers to Question 2 and Question 3?
The answers to Question 2 and 3 are very similar ≈ 9.746784

Question: 5.
Repeat the process one more time: Babylon(95, \#) where \# is the answer to Question 3.
Answer: babylon(95, 9.74679434481) $=9.74679434481$
Question: 6.
Square the answer to Question 5. What is this algorithm doing?
Answer: $9.74679434481^{2} \approx 95$
The algorithm is providing progressively closer approximations to the square root of a number.
Note: This is called the Babylonian technique for computing the square-root of a number. The first number entered in the program is the number to be square-rooted. The second number is a reasonable estimate for the squareroot.

Question: 7.

Repeat the above process for Babylon(200,15). After 4 or 5 steps, square your answer. Does this confirm your response to Question 6?

Answer:
Step 1: $\operatorname{babylon}(200,15)=14.1666666667$
Step 2: $\operatorname{babylon}(200,14.1666666667)=14.1421568627$
Step 3: $\operatorname{babylon}(200,14.1421568627)=14.1421356237$
Step 4: $\operatorname{babylon}(200,14.1421356237)=14.1421356237$
$14.1421356237^{2} \approx 200$
The algorithm / program provided progressively closer approximations for the square-root of 200.
Insert a new Problem and create a new program called: p
This program requires only a single value. The program computes the sum of a series of numbers, the quantity of terms is determined by the value of ' a '. The summation command is available from the 'maths' tools menu obtained by pressing: 㮶. (As shown opposite)

Make sure the decimal place is included after the 2 in the numerator.

Question: 8.
Run the program from a calculator application and determine the result when $n=10$.
Answer: 3.09616152646 (At this stage this number is unlikely to raise any 'interest').

Question: 9.

Run the program from a calculator application and determine the result when $n=100$.
Answer: 3.13664218887 (Rounding at second decimal place: 3.14 may arouse suspicion $\approx \pi$).

Question: 10.

Run the program from a calculator application and determine the result when $n=500$. What value do you think this computation is approximating?

Answer: 3.14059464985 (Approximation now much closer: $\pi \approx 3.14159$) Given the first three digits, students should now start to recognise this value as approaching: π.

