

to open the

(On the iPad[®], tap on the wrench icon

menu.)

Press 1 (1: Templates), 1 (1: Angles & Sides).

2. To translate \triangle ABC up 2 units and to the left 3 units, click on \checkmark or press T, then press the up arrow (\blacktriangle) twice and the left arrow (\blacklozenge) three times.

Zoom \bigcirc in (+) or out (-) as needed.

- a. Record the Original angle measures (first measures displayed) in the first row of the following table.
- b. Investigate and mentally make note of Angle Measures by grabbing and moving each of the three vertices of ∆ ABC (A, B, C) to create different shaped triangles.
 Record a set of data observed in row "Figure 1" in the following table.

Up 2, Left 3	$m \angle A$	$m \angle B$	$m \angle C$	$m \angle A'$	$m \angle B'$	$m \angle C'$
Original						
Figure 1						

c. Discuss observations in your group. Write a conjecture about the angle measures.

V	Translations: Lesson 1 Angles & Sides	Name
	Student Activity	Class

d. Click on \underbrace{Next} or press) to see the lengths of the sides of the triangles.

Record the Original side lengths (first measures displayed) in the first row of the following table.

e. Investigate and mentally make note of Side Lengths by grabbing and moving each of the three vertices of Δ ABC (A, B, C) to create different shaped triangles.
 Record a set of data observed in row "Figure 1" in the following table.

Up 2, Left 3	\overline{AB}	\overline{BC}	\overline{CA}	$\overline{A'B'}$	$\overline{B'C'}$	$\overline{C'A'}$
Original						
Figure 1						

- f. Discuss observations in your group. Write a conjecture about the lengths of the sides.
- 3. Reset the page. Press Reset (ctrl del).

Repeat what was done in exercise 2, but with each person in the group doing a different translation. Each person in the group should choose one from the following:

- i) Translate ΔABC down 4 units and to the right 2 units.
- ii) Translate ΔABC up 5 units.
- iii) Translate Δ ABC down 1 unit and to the left 4 units.
- iv) Translate $\Delta\,{\rm ABC}$ up 6 units and to the left 3 units.
- a. Record the Original angle measures (first measures displayed) in the first row of the table below.
- b. Investigate and mentally make note of Angle Measures by grabbing and moving each of the three vertices of ∆ ABC (A, B, C) to create different shaped triangles.
 Record a set of data observed in row "Figure 1" in the following table.

Circle: i ii iii iv	$m \angle A$	$m \angle B$	$m \angle C$	$m \angle A'$	$m \angle B'$	$m \angle C$ '
Original						
Figure 1						

c. Discuss observations in your group. Is your conjecture about the angle measures still true?

V	Translations: I	esson 1 Angles & Sides	Name
	Student Activity		Class

- d. Click on Next or press i to see the lengths of the sides of the triangles.
 Record the Original side lengths (first measures displayed) in the first row of the table below.
- e. Investigate and mentally make note of Side Lengths by grabbing and moving each of the three vertices of ΔABC (**A**, **B**, **C**) to create different shaped triangles.

Circle: i ii iii iv	\overline{AB}	\overline{BC}	\overline{CA}	$\overline{A'B'}$	$\overline{B'C'}$	$\overline{C'A'}$
Original						
Figure 1						

Record a set of data observed in row "Figure 1" in the following table.

- f. Discuss observations in your group. Is your conjecture about the lengths of the sides still true?
- 4. Many different triangles have been translated in several directions.Generalize explorations and investigations by responding to the following:
 - a. If a triangle is translated, what appears to be true about the measures of the angles of the pre-image and image triangles?
 - b. If a triangle is translated, what appears to be true about the lengths of the sides of the pre-image and image triangles?
- Because the corresponding angles and the corresponding sides of the pre-image and image triangles are congruent, the triangles are congruent.
 Therefore, a translation is a rigid motion, or an isometry.
 We also say that a translation is a distance-preserving and an angle-preserving transformation.
- 6. ΔDEF has been translated down 7 units and to the right 8 units. Answer the following.
 - a. If $m \angle D = 35^\circ$, $m \angle D' =$ _____.
 - b. If EF = 8 cm, E'F' = _____.
 - c. If $m \angle E = 120^{\circ}$, which other angle has a measure of 120° ?
 - d. If DF = 3 in, which other segment has a length of 3 in? _____