ALGEBRA I ACTIVITY 3: Generating Recursive Sequences to Explore Linearity

ACTIVITY OVERVIEW:

In this activity we will

- Define a perimeter pattern recursively
- Generate a recursive sequence using the
calculator using two methods

- Use recursion to answer questions

Press ENTER, ENTER, ENTER to show the perimeter for the next three figures. Unfortunately, this method will not be very useful if you are asked how many squares will have a perimeter of 34 units.

Clear the home screen. Press 2nd $010,42 n d$. Then press ENTER. This defines your first term as 1 square, perimeter of 4 units.

Now you need to show that as the number of squares increase by one, the perimeter increases by 2. Press

Press ENTER. The result $\left\{\begin{array}{ll}2 & 6\end{array}\right\}$ indicates that the figure with 2 squares has a perimeter of 6 units.

Press [ENTER, ENTER, ENTER to show the number of squares and perimeter for the next three figures. How many squares will have a perimeter of 34 units?

To return to the beginning, press 2nd ENTER repeatedly until the entry $\{1,4\}$ appears. Press ENTER to set this as the start again. Then press $2 n d$ ENTER until the entry $\{\operatorname{Ans}(1)+1$, $\operatorname{Ans}(2)+2\}$ appears. Press ENTER.

Press ENTER to answer questions like "What will the perimeter be when there are 20 squares? How many squares will give a perimeter of 50 ?"

Since having a constant rate of change is a characteristic of linearity, this sequence can be produced with a linear function. Use your knowledge of linear equations to create a function rule that you think will produce a table to match the sequence (where x is number of squares and y is perimeter).

Press $Y=$ and enter your equation.

X	Y_{1}		
0	2		
1	4		
2	6		
2	10		
5	10		
5	14		
$X=0$			

