TEXAS INSTRUMENTS

ALGEBRA I ACTIVITY 3: GENERATING RECURSIVE SEQUENCES TO EXPLORE LINEARITY

 ACTIVITY OVERVIEW: In this activity we will Define a perimeter pattern recursively Generate a recursive sequence using the calculator using two methods Use recursion to answer questions 	$\overset{\diamond \diamondsuit}{\longleftrightarrow} \overset{\diamondsuit}{\longleftrightarrow}$
On the home screen, type the perimeter of the first figure in the illustration above (4) and press ENTER. Then press (+)2 ENTER. This will show how the perimeter grows when the next square is added.	4 Ans+2 6 ■
Press ENTER, ENTER, ENTER to show the perimeter for the next three figures. Unfortunately, this method will not be very useful if you are asked how many squares will have a perimeter of 34 units.	4 Ans+2 6 8 10 12 ■
Clear the home screen. Press 2nd (1,42nd). Then press ENTER. This defines your first term as 1 square, perimeter of 4 units.	<1,4) (1,4)
Now you need to show that as the number of squares increase by one, the perimeter increases by 2. Press 2nd (2nd(-)(1)+1, 2nd(-)(2)+22nd)). Press ENTER. The result {2 6} indicates that the figure with 2 squares has a perimeter of 6 units.	(1,4) (Ans(1)+1,Ans(2) +2) (2 6)

Press ENTER, ENTER, ENTER to show the number of squares and perimeter for the next three figures. How many squares will have a perimeter of 34 units?	(Ans(1)+1,Ans(2) +2) (3 8) (4 10) (5 12) ■
To return to the beginning, press 2nd ENTER repeatedly until the entry {1,4} appears. Press ENTER to set this as the start again. Then press 2nd ENTER until the entry {Ans(1)+1, Ans(2)+2} appears. Press ENTER.	(4 10) (5 12) (1,4) (Ans(1)+1,Ans(2) +2) (2 6)
Press <u>ENTER</u> to answer questions like "What will the perimeter be when there are 20 squares? How many squares will give a perimeter of 50?"	(18 38) (19 40) (20 42) (21 44) (22 46) (23 48) (24 50)
Since having a constant rate of change is a characteristic of linearity, this sequence can be produced with a linear function. Use your knowledge of linear equations to create a function rule that you think will produce a table to match the sequence (where x is number of squares and y is perimeter).	
Press \underline{Y} = and enter your equation.	Plot1 Plot2 Plot3 \Y182X+2 \Y2= \Y3= \Y4= \Y5= \Y6= \Y7=
Press 2nd GRAPH to observe the table. Determine if your equation is correct by checking the table against the sequence on the home screen.	X Y1 0 1 2 4 5 8 4 10 5 12 6 14 X=0