Geometry SOAP I: The Shortest Distance

In this investigation we are going to determine the best place to build a warehouse so that it can service three stores with the least amount of travel.

1. Given Store A at $(0,3)$, Store B at $(0,-3)$ and Store C at $(10,0)$ as shown below we wish to build a warehouse that will service all three locations so that the total distance to the three stores is kept to a minimum. Find point P for the warehouse such that P is on the x-axis between $(0,0)$ and $(10,0)$ inclusive such that $\mathrm{PA}+\mathrm{PB}+\mathrm{PC}$ is as small as possible.

2. Where do you think the best location for P is? Give the coordinates and explain why.

Geometry SOAP I: The Shortest Distance

3. Now let's test some possibilities. Fill in the table below for the given warehouse locations.

\mathbf{P}	PA	PB	PC	$\mathbf{P A}+\mathbf{P B}+\mathbf{P C}$
$(0,0)$				
$(0,1)$				
$(0,2)$				
$(0,3)$				
$(0,4)$				
$(0,5)$				
$(0,6)$				
$(0,7)$				
$(0,8)$				
$(0,9)$				
$(0,10)$				

4. Given the data from the table above, answer question 2 again and give $\mathbf{P A}+\mathbf{P B}+\mathbf{P C}$ for these new coordinates. Explain your new choice or why you kept the original position for the warehouse.
5. How did you calculate the distances?
6. Give a general statement of the distance $\mathbf{P A}+\mathbf{P B}+\mathbf{P C}$ for \mathbf{P} being at the coordinates (t, s).
7. Now create this situation in the Nspire, using Graphs and Geometry, Measurement, Calculate, and Auto Data Collection.

Geometry SOAP I: The Shortest Distance

Geometry
 SOAP I: The Shortest Distance

Geometry SOAP I: The Shortest Distance

Now add the Graphs \& Geometry application by pressing (1)2.	
You have the Graphing View but we want the Plane Geometry View. Press (meny and then under View select the correct view.	
	* ${ }^{\text {- }}$ - $f(x)=$ 入
Now we want to create the image in question 1 above. To see the Grid press वt+1 ment and select 3: Show Grid.	
	1 cm
	1:Recent 2:Attributes 3:Show Grid 4:Zoom

Geometry
 SOAP I: The Shortest Distance

Geometry
 SOAP I: The Shortest Distance

From menn select the 2:Point On option under Points \& Lines.	
You don't have to get the points at the exact place initially. We will adjust and label them next. Notice the Tool icon in the upper left corner. It is important to know what tool you have selected as you do things in G\&G.	
Press ©sc to give up the Point On tool and then press (ment and select 6: Coordinates and Equations from the Action choice.	

Geometry
 SOAP I: The Shortest Distance

Place the points in the approximate positions. Once you press ${ }^{*}$ 莫 you will need to move the text that shows the coordinates away from the point to a place that it can be seen. Then press **) again to place the text.	1.11 .2 1.4 RAD AUTO REAL
To adjust the points to their correct locations, assuming you didn't get them all in the right place, press ©ss) to give up the tool and then point at the value you want to change, then press ${ }^{*}$) once and then again to edit the coordinate.	1.1 1.2 1.3 1.4 RAD AUTO REAL \square
	-1 ${ }^{\text {1 }}$ (${ }^{\text {a }}$
	1.1 1.2 1.3 1.4 RAD AUTO REAL \square
	$\left\lvert\, \begin{aligned} & 5,{ }^{y}: 2 \\ & (0,2) \\ & (0): ~\end{aligned}\right.$

Geometry SOAP I: The Shortest Distance

Geometry SOAP I: The Shortest Distance

Now move close to the point you want to label and press ** then key in the letter and save it

	1.1	1.3	1.4	RAD AUTO REAL	\square
Abl 5 . ${ }^{\text {y }}$					
- $(0,3)$					
$\because: \%: \%: \square: \square:{ }^{\text {x }}$					
- -1	1				15
				$(7,0)$ \% 10,	
	$(0,-3)$				
	-5:				

	1.1 1.21 .3	1.4	Rad auto real	
Abty $5^{\text {y }}$.				
-	1			5
	: :		. . .	
			X : :	
	${ }_{-5}^{(0,-3)} B^{0}$			

Geometry
 SOAP I: The Shortest Distance

To draw the roads to the Warehouse we will press nemu and select the 5: Segment option from the Points \& Lines choice.	
Click on the first point (a store) and then the Warehouse as the second point. Repeat for all three roads. Don't forget to get the road from store and the Warehouse.	
To determine the shortest distance to the three stores we will need to collect the lengths of the three line segments. Press (ema and select option 1:Length from the Measurement choice.	

Geometry SOAP I: The Shortest Distance

Geometry SOAP I: The Shortest Distance

Geometry SOAP I: The Shortest Distance

Geometry SOAP I: The Shortest Distance

Geometry
 SOAP I: The Shortest Distance

