Once and For All...Absolutely

An Exploration into Solving Absolute Value Inequalities

Alan Trogdon
Cary High School
Cary, North Carolina
October 1, 2007

Open the lesson Algebra_AbsoluteValue_Trogdon.tns

Below are questions/notes about the problems in the TI-Nspire lesson activity. Your responses will provide a record of the concepts you encountered while doing the calculator activity.

Problem 1:

1. There are two solutions to the equation $|x|=N$ as long as $N>0$. Those solutions are the x-coordinates of the points of intersection for the functions $y=|x|$ and $y=N$. In this lesson, those values are referred to as L and R.
a. Write an inequality for the solutions to the inequality $|x|<N$ using L and R.
b. Write an inequality for the solutions to the inequality $|x|>N$ using L and R.
2. Write a statement for the solutions for each of the absolute value inequalities below:
a. $|x|<7$
b. $|x|>3$
3. Write a statement for the solutions for each of the absolute value inequalities below:
a. $|x| \leq 7$
b. $|x| \geq 3$

Problem 2:

In this problem, the absolute value inequalities are of the form $|x-a|<N$ and $|x-a|>N$. The x-coordinates for the points of intersection of $y=|x-a|$ and $y=N$ are still referred to as L and R.
4. Are the values of L and R opposites (additive inverses) of each other in this problem? Why or why not?
5. The solutions to the inequality $|x-a|<N$ are all of the values for x \qquad the values of L and R.
6. Write a compound statement that gives the solutions to $|x-a|>N$.
7. Solve the following absolute value inequalities. Graph the related functions as needed to find the find/confirm the values of L and R.
a. $|x-1|>5$
b. $|x+4|<2$
c. $|x+6| \geq 10$
d. $|x-1| \leq 1$

Once and for All...Absolutely, page 3

Problem 3:

In this problem of the calculator lesson, the solutions to the absolute value inequalities are found without using the graphs of the functions $y=|x-a|$ and $_{y}=N$.
9. For the inequality $|x-a|<N$, the locations of L and R are \qquad units to the left and right of \qquad .
10. For the inequality $|x-6|<5$, the center of the solutions is at $x=$ \qquad and the solutions begin at $x=$ \qquad and end at $x=$ \qquad . (Values of L and R.)
11. For the inequality $|x-a|<N$, the solutions are described by which of the following statements? Circle the correct choice.

$$
L<x<R \quad x<L \text { or } x>R
$$

12. Solve the following inequalities:
a. $|x-3|<1$
b. $|x+5|>2$
c. $|x+\pi| \leq 5$
d. $|x-\sqrt{3}| \geq 7$

Problem 4:

13. Restate the problems with an equivalent absolute value inequality in which the coefficient of $\boldsymbol{>}$ is 1 . Solve the inequality problems using your restatements.
a. $|3 x-12|<9$
b. $|8-2 x|>14$

Problem 5:

14. Describe the set of solutions for the inequality $|x|>-2$.
15. Describe the set of solutions for the inequality $|x|>0$.
16. Describe the set of solutions for the inequality $|x|<-1$.
