\qquad
\qquad

Open the TI-Nspire ${ }^{\text {TM }}$ document MolecularWeight.tns.

Molecular Weight
Atomic Mass and Formula Weight
$1.2 \quad 1.3$ Molecula Rev

Background

It is difficult to find a chemistry lab or a chemist's office that does not have a periodic table on hand. When Dmitri Mendeleev developed the first periodic table, he provided chemists with an invaluable tool for quickly finding information about chemical elements. Two of the most useful bits of information are the element's atomic number and its atomic mass. It is easy to confuse the two, but the atomic number is the number of protons in a single atom of an element. The atomic mass is the average mass of an atom of the element. It is measured in atomic mass units (amu). The mass of one mole of that element is equal to its atomic mass, only the units are changed from amu to grams. For example, 1 atom of hydrogen has a mass of 1.01 amu and 1 mole (6.022×10^{23} atoms) has a mass of 1.01 grams.

Molecules are combinations of atoms. To determine the formula weight, or molecular weight, of a molecule, you need to add up the atomic masses of all the atoms in the molecule. For example, one molecule of $\mathrm{H}_{2} \mathrm{O}$ is made of two hydrogen atoms and one oxygen atom. Each hydrogen atom has a mass of 1.0 amu , and each oxygen atom has a mass of 16.0 amu . The total mass of one water molecule is then: (2 hydrogen atoms $\times 1.0 \mathrm{amu}$) $+(1$ oxygen atom $\times 16 \mathrm{amu})=18 \mathrm{amu}$. This would then mean that 1 mole of water would weigh 18.0 g . In this activity, you will use the periodic table to determine the atomic mass of different elements. Then you will calculate the formula weight, or molecular weight, for molecules.

Move to page 1.3.

A periodic table has been included for your reference. Note that the data can be viewed for each element by selecting the box. Use the Periodic Table to help answer questions on pages 1.4-1.7.

Q1. What is the mass of 1 atom of C ?

Q2. What is the mass of 1.00 mole of C ?
\qquad
\qquad

Q3. What is the mass of 2 atoms of O ?

Q4. What is the mass of 2 moles of O ?

Move to pages 1.8-1.11

You will now calculate the molecular weight for different molecules using the Calculator application. Continue to refer to the Periodic Table on page 1.3 as needed.

Q5. What is the mass of 1 molecule of NaCl ?

Q6. What is the mass of 1.00 mole of $\mathrm{H}_{2} \mathrm{SO}_{3}$?

Q7. What is the mass of 4.00 moles of CaCl_{2} ?

Q8. What is the mass of 1 mole of MgCO_{3} ?

Q9. How many atoms are contained in $\mathrm{Na}_{2} \mathrm{O}$?

Q10. The compound $\mathrm{Li}_{2} \mathrm{~S}$ contains:

Q11. What is the mass of 5 molecules of NaCl ?

Q12. What is the mass of 0.25 mole of MgCl_{3} ?

Q13. How many moles of LiBr are in 50.0 g of LiBr ?

