Exploring Inverse Functions-Teacher Notes

Activity Overview

Students will investigate the fundamental concept of an inverse, generate the inverse graphs of relations applying this concept, and algebraically determine the inverse.

Materials

- Technology: TI-Nspire handheld, TI-Nspire CAS handheld, or TI-Nspire CAS computer software
- Documents: Inverse_Functions.tns, Inverse_Functions_Student.doc

Student Solutions

Inverses Point-by-Point

1. $\{(5,2),(5,-4),(-2,-9),(-3,0)\}$
2. Point moves like the original function, only flipped about $y=x$.

Inverses as a Graphical Relation

3. a. Moves like the original parabola turned on its side
b. Yes
c.

d. Two halves of $y=\sqrt{x}$ and $y=-\sqrt{x}$ or simply $y^{2}=x$

Inverses as Functions

4. a. If there exists a horizontal line that intersects the graph at more than one point, then the inverse relation is not a function.

Exploring Inverse Functions-Teacher Notes

b. It is a function.

Finding Inverses Algebraically
5.

6. a. Yes, it matches the locus.

b. The composition gives a result of x. This is important because the composition of a function with its inverse should give the identity function (maps x directly back to x).

