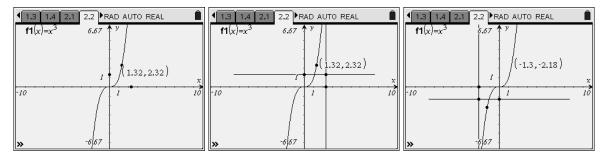
Exploring Inverse Functions—Teacher Notes

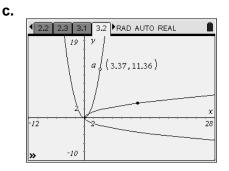
Activity Overview

Students will investigate the fundamental concept of an inverse, generate the inverse graphs of relations applying this concept, and algebraically determine the inverse.


Materials

- Technology: TI-Nspire handheld, TI-Nspire CAS handheld, or TI-Nspire CAS computer software
- Documents: Inverse_Functions.tns, Inverse_Functions_Student.doc

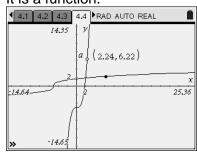
Student Solutions


Inverses Point-by-Point

- **1.** {(5, 2), (5, -4), (-2, -9), (-3, 0)}
- **2.** Point moves like the original function, only flipped about y = x.

Inverses as a Graphical Relation

- 3. a. Moves like the original parabola turned on its side
 - b. Yes


d. Two halves of $y = \sqrt{x}$ and $y = -\sqrt{x}$ or simply $y^2 = x$

Inverses as Functions

4. a. If there exists a horizontal line that intersects the graph at more than one point, then the inverse relation is not a function.

b. It is a function.

Finding Inverses Algebraically

5.

5.1 5.2 5.3 5.4 RAD AUTO REAL	
ine $e(x)=x$	Done
$\operatorname{ine} f(x) = \sqrt{x^2 + 1}$	Done
x))	$\sqrt{x^2+1}$
κ))	$\sqrt{x^2+1}$
	4/99

6. a. Yes, it matches the locus.

b. The composition gives a result of *x*. This is important because the composition of a function with its inverse should give the identity function (maps x directly back to x).