\qquad
Purpose: To use CAS and a variety of examples to discover the procedure for computing the derivative of a composite function.

Open the Chain Rule document on your handheld and follow the directions.

1. To discover the Chain Rule, first practice taking derivatives of a few functions using the handheld. Since each function will soon be an inner and outer function in the derivative of a composite, it will be helpful to keep a catalog of these derivatives in front of you.

$$
\begin{array}{lll}
\text { Function Inner } & \text { Outer } & \frac{d}{d x} \text { (inner) } \frac{d}{d x} \text { (outer) } \\
\sqrt{1+x^{2}} & & \\
\sin (2 x) & & \\
(x-1)^{3} & \\
(3 x+2)^{4} & & \\
\tan \left(x^{2}\right) & & \\
\sin ^{2} x & &
\end{array}
$$

2. Use the handheld to compute the following derivatives.
3. Based on these examples, can you see a pattern? Write out your guess by filling in the right side of the following equation.

$$
\frac{d}{d x}(f(g(x)))=
$$

$$
\begin{aligned}
& \text { Function } \\
& \sqrt{1+x^{2}} \\
& \sin (2 x) \\
& (x-1)^{3} \\
& (3 x+2)^{4} \\
& \tan \left(x^{2}\right) \\
& \sin ^{2} x
\end{aligned}
$$

Derivative

