Name \qquad
\qquad

Problem 1 - A general trigonometric function

Using the Transformation Graphing app, press Y and enter the general sine function in \mathbf{Y}_{1},
$Y_{1}=A * \sin (B * X+C)+D$.
Complete the table.

A	B	C	D	zero1	zero2	\min	\max
1	1	0	0				
4	$1 / 2$	3	1				

Problem 2 - The effect of the coefficients A, B, C, and D

Examining A

- Set $B=1$ and $C=D=0$ and change the value of A. Try 4 different values of A.

A	B	C	D	zero1	zero2	\min	\max
	1	0	0				
	1	0	0				
	1	0	0				
	1	0	0				

- How did the appearance of the graph change?
- Which graph features changed? Which did not change?
- Write equations to describe the relationship between A and the features that did change.
- When $B=1$ and $C=D=0$, \qquad .

The value of A is the amplitude. It is equal to half of the difference between its maximum and minimum values.

- Calculate the amplitude from the minimum and maximum values in the table above.
- Compare the results to the values of A. What do you notice?

Examining B

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	zero1	zero2	\min	\max
1		0	0				
1		0	0				
1		0	0				
1		0	0				

- Try 4 different values of B. How did the appearance of the graph change?
- Which graph features changed? Which did not change?
- Describe the relationship between B and the features that did change.

Examining C

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	zero1	zero2	\min	\max
1	1		0				
1	1		0				
1	1		0				
1	1		0				

- Try 4 different values of C. How did the appearance of the graph change?
- Which graph features changed? Which did not change?
- What is the effect of an increasing sequence of values for C on the graph?
- What is the effect of a decreasing sequence of values for C on the graph?

Examining D

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	zero1	zero2	\min	\max
1	1	0					
1	1	0					
1	1	0					
1	1	0					

- Try 4 different values of D. How did the appearance of the graph change?
- Try an increasing sequence of values for D such as $0,1,2,3,4 \ldots$

What is the effect on the graph?

- Try a decreasing sequence of values for D such as $0,-1,-2,-3,-4 \ldots$

What is the effect on the graph?

- Describe the effect of the value of D on the graph. How does changing D change the graph features?

Problem 3 - A closer look at amplitude, period, and frequency

In Y_{1}, enter the general cosine function, $A^{*} \cos \left(B^{*} \boldsymbol{X}+\boldsymbol{C}\right)+\boldsymbol{D}$.
amplitude: half of the vertical distance from minimum value to maximum value period: horizontal distance from one peak (maximum point) to the next frequency: number of cycles per 2π interval

- Write a formula to find the frequency f given the period p.
- Use the formula to complete the table on the next page.

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	max point	min point	next max point	amplitude	period	frequency
1	1	0	0	$(0,1)$	(3.14,-1)	$(6.28,1)$	$1 / 2^{*}(1-(-1))$ 2	$6.28-0$ 6.28 2π	
	1	0	0						
1	1	0	0						
1		0	0						
1	1		0						
1	1		0						
1	1	0							
1	1	0							
1	1	0							

- Based on the results in the table, determine and record each relationship:
- A and the amplitude
o $\quad B$ and the frequency
o B and the period

