Linear Transformations Teachers Teaching with Technology" **Student Activity**

7 8 9 10 11 12

TI-Nspire

Investigation

Investigation

Question: 1.

The number appearing uppermost on a regular die is a discrete random variable. The uniform distribution of X can be represented as follows:

x	1	2	3	4	5	6
p(x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Determine the expected value for the distribution according to the i)

rule:
$$\mu_x = E(X) = \sum_{i=1}^n x_i p(x_i)$$

ii) Determine the variance and standard deviation for the distribution according to the rule using μ_x from the previous question:

$$\sigma_x^2 = Var(X) = \sum_{i=1}^n (x_i - \mu)^2 p(x_i)$$

iii) Determine the variance for the distribution according to the rule:

$$\sigma^2 = Var(X) = E(X^2) - E(X)^2$$
 where $E(X^2) = \sum_{i=1}^n x_i^2 p(x_i)$

The mean: μ and variance: σ^2 of a random variable are called parameters as they are computed using theoretical probabilities. The mean: \overline{x} and variance: s_x^2 of a sample are called statistics as they are computed using sample data.

Question: 2.

A non-standard die, shown opposite, is formed by increasing the number (dots) on each side of the die by 2. The uniform distribution of Y can be represented as follows:

у	3	4	5	6	7	8
p(x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

i) Without using any formulas, estimate the mean for this distribution and explain your reasoning.

(C) Texas Instruments 2016. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: P. Fox

- ii) Without using any formulas, estimate the variance for this distribution and explain your reasoning.
- iii) Determine the expected value for the distribution according to the rule:

$$\mu_{y} = E(Y) = \sum_{i=1}^{n} y_{i} p(y_{i})$$

iv) Determine the variance for the distribution according to the rule using μ_{y} from the previous question:

$$\sigma_{y}^{2} = Var(Y) = \sum_{i=1}^{n} (y_{i} - \mu)^{2} p(y_{i})$$

v) Determine the variance for the distribution according to the rule:

$$\sigma_{y}^{2} = Var(Y) = E(Y^{2}) - E(Y)^{2}$$
 where $E(Y^{2}) = \sum_{i=1}^{n} y_{i}^{2} p(y_{i})$

vi) Reflect and comment as applicable, on your estimates provided in parts (i) and (ii) with the computed results for parts (iii), (iv) and (v).

Generalising the Result

The previous two distributions have been stored on the TI-Nspire calculator file, Linear Transformations. The random variable and respective probabilities have been stored as lists.

- x = x values for Regular Die
- p = probabilities for Regular Die
- y = y values for Transformed Die (The size of the *translation* can be controlled by a slider)

Instructions:

Navigate to page 1.2, μ_x and σ_x represent the mean and variance of the standard die. Use the slider to translate the distribution of X and therefore the subsequent distribution of Y.

Set the slider n = 2 to check your answers to the previous questions.

Note the similarity in the notation, where $y_i = y[i]$

Question: 3.

Use the slider to determine the mean and variance for a die with 5 extra spots on each side.

Question: 4.

Describe the effect on the mean and variance of increasing the number of dots (value) on each side of the die.

1.2 1.3 2.1 *Linear Tra ons -	RAD 🚺 🗙
Regular die: μ _x = 3.5 σ _x = 2.917	~
Transformed die: $\langle \rangle n = 0.$	
$\mu_{\mathbf{y}} := \sum_{i=1}^{6} \left(\mathbf{y}[i] \cdot \mathbf{p}[i] \right) + 3.5$	
$\mathbf{s}_{y} := \sum_{i=1}^{6} \left((\mathbf{\mu}_{y} - \mathbf{y}[i])^{2} \cdot \mathbf{p}[i] \right) + 2.917$	

Navigate to page 1.3, a calculator application. A third distribution, V has been included in this file. This distribution is a translation of the X distribution by 'a' units.

The mean and variance can be determined using the same formulas outlined previously.

- The subscript label (v) for the mean can be accessed from the template menu. Once it has been assigned, the variable can be called up directly using the [VAR] key.
- Successive values for v and corresponding probabilities stored as lists can be called upon using the notation shown opposite where v_i = v[i] and p_i = p[i].

Note that if u_v is stored then it can be used directly in the calculation of the variance.

Question: 5.

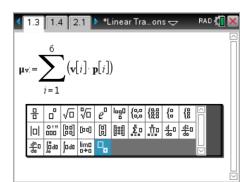
Determine the mean and variance of distribution V, relate the results to your investigation so far and relate these to the general linear transformations of a random variable X:

E(X+b) = E(X)+bVar(X+b) = Var(X)

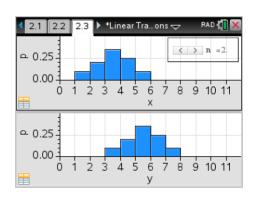
Non-Uniform Distributions:

So far all the distributions have been based on a uniform distribution that described the outcomes of rolling a die.

Navigate to page 2.1, the distribution is still discrete, but it is not uniform.


A probability check is located in cell D2.

The probabilities in column B (labelled P) can be changed, so too the outcomes x in distribution X including the addition or removal of outcomes and their corresponding probabilities


The second distribution (Y) is a translation of X and will automatically update. **Do not directly adjust the outcomes for distribution Y.**

A pair of graphs on Page 2.3 show the original distribution X (top graph) and the translated distribution Y (bottom graph) where:

Y = X + b

🖣 1.3 🛛 1.4 🛛 2.1 🕨 Linear Tran ons 😓 🛛 🕅 🗶							
P	A x	^B p	Су	D			
=			='x+'n				
1	1	0.1	З.	Probability Check			
2	2	0.2	4.	1.			
3	3	0.35	5.				
4	4	0.25	6.				
5	5	0.1	7.				
D5				 			

© Texas Instruments 2016. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: P.Fox

Set the distribution to match the table below:

x	1	2	3	4	5
p(x)	0.1	0.2	0.35	0.25	0.1

Question: 6.

Determine the mean and variance of this distribution.

Question: 7.

Adjust the slider (translation) so that n = 3. Describe the change that occurs to the mean of the translated distribution and explain how the visual shows that the variance does not change.

Continuous Distribution

Continuous distributions can also be translated. For continuous distributions the formulas for mean and variance are as follows:

$$\mu = E(X) = \int_{-\infty}^{\infty} x \cdot p(x) dx$$
$$\sigma^{2} = Var(X) = \int_{-\infty}^{\infty} x^{2} \cdot p(x) dx - \mu^{2}$$

Instructions:

Navigate to page 3.1, a continuous random variable X has a distribution defined by:

$$f(x) = \begin{cases} \frac{x(6-x)}{36} & 0 \le x \le 6\\ 0 & Else \end{cases}$$

A graph of the function is on page 3.2.

Question: 8.

Verify that f(x) is a probability density function.

Question: 9.

Determine the mean and variance of this continuous distribution.

Question: 10.


The distribution is translated (as shown above); determine the mean and variance of the translated distribution.

Question: 11.

If $\Pr(\mu - a < x < \mu + a) = 0.95$, determine the value of a.

Question: 12.

Suppose Y is a continuous random variable such that Y = X + 3, determine the values of *a* if $Pr(\mu - a < y < \mu + a) = 0.95$.

Author: P.Fox