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[Note: Before starting any example or exercise below, press �g on the home screen to Clear a-z.] 
 
Curve fitting, the process of finding a function that passes through (or near) a set of given 
data points, is a major application of mathematics. Often, algebra is all that is needed. 
 
Example 1: Find the equation of the parabola passing through (2,3), (5,9), and (7,6). 
 
Define f(x)=a*x^2+b*x+c. Then get 3 equations from the given points (fig. 1a) and find 
a, b, and c via the command solve(ans(1) and ans(2) and ans(3),{a,b,c}) (fig. 1b). The 
command f(x)|ans(1) substitutes the values into the equation for f (graphed in fig. 1c). 

Fig. 1a  Fig. 1b  

Fig. 1c  An exact fit occurs as a result of the algebra. 
 
 
Data such as that in the table below (plotted in figure 2a) often lends itself to algebraic as 
well as statistical analysis (regression). Similar to Example 1, a system of 8 equations in 
8 variables would give an exactly-fitting 7th degree polynomial, but we have no control 
over the resulting function (fig. 2b) and it is an algebraic nightmare. [If you try the various 
regression models built into the TI-89, just to see what happens, you will find that the cubic and quartic 
models tie for “best” fit, but are woefully inaccurate. This is not an appropriate use of regression, however.] 

x 5 15 25 35 50 65 75 85 
y 15 10 25 10 25 10 30 25 

Fig. 2a  Fig. 2b  



 
But we can control the outcome. We can produce a function that (1) hits all 8 points, (2) 
is differentiable everywhere, and (3) haw derivative 0 at each point, as in figure 3a. 

Fig. 3a  Fig. 3b   
The function graphed in figure 3a is a 7-piece piecewise-defined function, each piece 
being a so-called cubic spline. Piecewise functions are not generally easy to make 
differentiable (making them continuous is hard enough), but any number of points can be 
connected by curves via cubic splines with the result always being differentiable. The 
idea permits a variety of ways to connect the dots (see figures 3b and 3c), including the 
result in figure 3d, a slightly better-behaved version of the 7th degree function (fig. 2b). 
Given a few “target” points, all that needs to be done is to provide the slope at each point. 
Needless to say, cubic splines arise from calculus principles. Here’s how.  

Fig. 3c  Fig. 3d  
 
Similar to Example 1, four non-collinear points with distinct x-coordinates generally 
define a unique cubic [or quadratic—Why?] function. That is algebra. It is also true that two 
points and two slopes at those points determine one. That is calculus. So, for example, the 
points (2,4) and (5,1), called nodes in the world of cubic splines, will define a unique 
cubic function f provided we supply slope information for each node (that is, give values 
to f ' (2) and f ' (5)).  
 
Example 2: Find the cubic spline for which 6)5(,1)5(,3)2(,4)2( −=′==′= ffff .  
 

If we define dcxbxaxxf +++= 23)( , there are 4 constants to determine. We will get 4 
equations from the given conditions, winding up having to solve a 4x4 linear system of 
equations. On the TI-89, the action looks like the screens in figures 4a through 4c. 



Fig. 4a  Fig. 4b  

Fig. 4c  Fig. 4d  
The command solve(ans(1) and ans(2) and ans(3) and ans(4),{a,b,c,d}) would then 
solve the system (as shown in figure 4c and tabulated, including the derivatives, in figure 
4d, as a reality check), but there is a much neater, slicker way. 
 
 
Exercise 1: Re-do Example 1, writing f as a polynomial expansion about x = 2 (which is 
an x-coordinate of one of the given nodes): dxcxxbxaxf +−+−+−= )2()2()2()( 23 . 

• What does the given condition f (2) = 4 tell us that d must equal? 
• Find f ' (x) (but don’t simplify). What does f ' (2) = 3 tell us that c must equal? 
• So, we know that values of c and d. The 2nd node information ( 6)5(,1)5( −=′= ff ), 

gives a 2x2 system from which you can find a and b and, thus, the cubic spline. 
• Graph the cubic spline. Are all 4 conditions ( 6)5(,1)5(,3)2(,4)2( −=′==′= ffff ) 

satisfied? Trace. Does it look right? 
 
 
Exercise 2: The points (2,3), (5,9), and (7,6) define a unique parabolic function, as shown 
in Example 1. Create a piecewise function consisting of two cubic splines that make a 
more interesting figure (such as the one in figure 5) that is differentiable throughout [2,7]. 

Fig. 5   
To make the definition, use the TI-89 when command, like so: 

when(x≥2 and x<5, first spline,when(x≥5 and x≤7,second spline,undef))→y1(x) 
 



This says, literally: 
If x is between 2 and 5, then 

use the cubic spline result obtained from the 1st and 2nd nodes; 
otherwise,  

if x is between 5 and 7, then 
use the cubic spline result obtained from the 2nd and 3rd nodes 

otherwise, the function is undefined. 
 
• You could clean up the command above to have no and’s and one more when. 
• You could make the graph more complex by adding more nodes and more splines. 

You would then have to add more when’s properly.  
 
 
Exercise 3: Generalize. 
 
Let two nodes and their slopes be given:  
• at (x0,f0), let the slope be d0 
• at (x1,f1), let the slope be d1 
Call the cubic function s3 and, learning from 
Exercise 1, “force” 0)0(3 fxs =  and 

0)0(3 dxs =′  by the command Define 
s3(x)=a*(x-x0)^3+b*(x-x0)^2+d0*(x-x0)+f0 
(fig. 6a). 

Fig. 6a  
 
Make sure that s3(x0)=f0. 
Then store the derivative of s3 it into s3p.  
Then type s3p(x) to recall it so you can 
check to make sure that s3p(x0)=d0 (fig. 6b). 

Fig. 6b  

The question is, “What must a and b equal in 
order for the second node and its derivative to 
fit into the cubic?” To make the node fit, we 
need s3(x1)=f1; to make the derivative at that 
node fit, we need s3p(x1)=d1. See figure 6c. 

Fig. 6c  

Because of the extreme algebraic nastiness of it all, no further screen shots can hold even 
the commands, let alone the results, so just carefully type the commands below. 
• The command solve(ans(1) and ans(2),{a,b}) will solve the previous two results (the 

equations in figure 6c) for a and b. The result is a gigantic mess that you’ll have to 
scroll across the screen for a long time to read [not that you need to], but it says, in 
essence, “a=…first big mess… and b=…second big mess…”  

• The command s3(x)|ans(1) will substitute the big messes that a and b equal into the 
s3 equation. This is the general cubic spline formula. It contains one variable, x, and 
six parameters, x0, f0, d0, x1, f1, and d1. To use it, you would store values into those 
six parameters and give the command s3(x). To use it again, you’d have to store 6 
more values to the parameters, repeating the process. There’s a better, shorter way. 



• The command ans(1)→s36(x,x0,f0,d0,x1,f1,d1) copies the mess that s3 equals into a 
new function that will give you the spline through nodes (x0,f0) and (x1,f1) with 
slopes d0 and d1. To use it, you would give a command like s36(x,2,3,4,5,6,1), 
getting the spline through (2,3) with slope 4 and through (5,6) with slope 1. 

 
 
Exercise 4: Use the s36 function from Exercise 3 to re-do Exercise 2 (or use your own 
better idea). The commands for re-creating the two splines of Exercise 2 will be 
s36(x,2,3,…,5,9…) and s36(x, 5,9…,7,6…), with each … being replaced by whatever 
slopes you used in Exercise 2 (or make up some new ones; have fun). A game plan might 
be to store the first spline into y1; the second, into y2. Then you could store when(x≥2 
and x<5,y1(x),when(x≥5 and x≤7,y2(x),undef)) into y99(x) and plot only y99 by 
turning both y1 and y2 off via e on the � screen. 
 
 
Exercise 5: Using the s36 spline-maker function of Exercise 3 and the game plan from 
Exercise 4, design something (a logo, the outline of a car or plane, etc.). You might want 
to plan it out on graph paper first, using as few nodes as possible (but as many as it 
takes), with well-chosen slopes (also determined from the graph paper). 
 
As an example, the design in figure 6 was made with four commands of the form 
s36(x,15,5,…,30,25,…). The slopes used at (15,5) were 0, .1, .5 and 1, while at (30,25) 
the slopes were 0, -1, -5, and –10. After getting simplified, specific results for each 
spline, functions (commands) of the form when(x>15 and x<30,…,undef) were stored to 
y1, y2, y3, and y4, one for each of the four splines produced by the s36 commands. 

Fig. 7  
 
 
The importance of cubic splines is that with just a few “control nodes” and well-chosen 
slopes at them, you can make some really interesting designs. If you don’t get what you 
want, you modify the slopes or add more nodes. The idea is used in Computer Assisted 
Drawing packages to enable quicker design, since relatively few points are required. The 
ideas are also applied in making scaleable characters for some computer printer fonts.�
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