\qquad
\qquad

Problem 1

To start, open the Cabri Jr. application found in the Apps menu.

Open the Cabri Jr. document called TRIANGLE. Press ϑ to open the F1:File menu and choose Open.... Then choose TRIANGLE from the list.

The area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is given by the formula:

$$
\text { Area }=\frac{1}{2}\left|\operatorname{det}\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right]\right|
$$

To find the area of the triangle on the screen, first find the coordinates of each vertex.

Step 1: Press GRAPH to open the F5:Appearance menu and choose Coord. \& Eq.

Step 2: Use the arrow keys to move the cursor to one of the vertices of the triangle. When it reaches the point, the cursor changes to a large solid arrow. Press ENTER to choose the point.

Step 3: Use the arrow keys to move the coordinates to an appropriate place on the screen. Press ENTER to place them.

Label all three points with their coordinates. Press CLEAR to exit Coord. \& Eq. Record the coordinates of the vertices below.
\qquad
x_{2} : \qquad y_{2} : \qquad
x_{3} : \qquad $У_{3}$: \qquad

Save your changes by pressing $Y \nexists$ to open the file menu and choosing Save. Then press 2nd [QuIT] to exit the Cabri Jr. app.

Determining Area

The next step is to create the matrix:

$$
\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right]
$$

Press [2nd [MATRIX] to open the Matrix menu. Arrow over to Edit and choose [A].

Set the size to 3×3 and enter the values into the matrix. You must press ENTER each time for the value to be recorded in the matrix. Press [2nd [QUIT] to exit.

$3 ; 3=1$

0.5*abs(det(CR])

Save your file. Compare it with the result of the formula.

Exercises

Use the formula to find the area of a triangles with the vertices listed below.

1. $(-2,-1),(5,0)$, and $(0,3)$
2. $(5,3),(2,-1)$, and $(-2,4)$

To confirm your answer:
Step 1: Using the TRIANGLE file turn on the Axes. Press GRAPH and open the Hide/Show submenu. Highlight Axes and press ENTER.

Step 2: Move the vertices to the correct locations. (Press ALPHA to grab the point.) The area of the triangle will automatically update on the screen.

Determining Area

Problem 2

Now let's find a similar formula for the area of a heptagon. Start Cabri Jr. and open the file HEPTAGON. This file shows a heptagon. Find the coordinates of its vertices and record them below.

$x_{1}:$	$y_{1}:$	$x_{5}:$
$x_{2}:$	$y_{2}:$	$x_{6}:$
$x_{3}:$	$y_{3}:$	$x_{7}:$
x_{4} :	y_{4} :	

CabriJr. cannot calculate the area of a heptagon automatically. However, you can use the formula for the area of a triangle! Use the Triangle tool to divide the heptagon into triangles. There are many ways to do this. One is shown.

Then use the Area tool to find the area of each triangle. Add to find the area of the heptagon.

area of heptagon: \qquad square units

Now on the Home screen, confirm your answer using the given at the beginning of the activity to find the area of each triangle, adding to find the total.

Note: This method can be used to find the area of any convex polygon!

Exercise

Open a new file and draw a quadrilateral with vertices $(-3,-1),(0,3),(5,0)$ and $(1,-1)$. Find its area by dividing it into triangles and applying the formula. Check your answer using the Area tool.

Problem 3

In this problem, you will find a formula for the area of a quadrilateral given its vertices. The formula is similar to that for the area of a triangle, but it involves a 4×4 matrix.

To build the formula, create a 4×4 matrix. Use the coordinates of the quadrilateral in the Problem 2
Exercise to fill in the first two rows.

Determining Area

Now you need to fill in the third and fourth rows. Keep in mind that if a matrix has two identical rows, or any row that is a multiple of another row, its determinant is zero.

Hint: Try a combination of 1 and -1 in the fourth row.

det($[\mathrm{A}]$)

Calculate the determinant of the matrix. Keep trying different combinations in the fourth row of the matrix until the determinant is a divisible by the area you found in the Exercise at the end of Problem 2.

Write the formula. Like the formula for the area of a triangle, it should involve a determinant, absolute value, and multiplication by a fraction.

Area of a quadrilateral =

Exercise

Return to Cabri Jr. Drag the vertices of the quadrilateral to new positions. Use the new vertices in your formula. Then calculate the area using the Area tool. Is your formula correct?

New vertices: \qquad
New area: \qquad square units

