Draw in a systematic way all of the different rectangles using integer lengths with a fixed perimeter of __- units.
a)

b)

Perimeter	Length	Width (L्L $)$	Area (L2)

Perimeter	Length	Widtf (Ľ)	Area (L2)

-Page 1 -
Greatest Area
c) Enter the data from the width and are a column into $L 1$ and L2. Plot the data using $S \mathcal{T A T P L O T}$. $\mathcal{A d j u s t}$ the window using ZOOM-9:ZoomS tat. Sketch the plot on the grid.

d) Ule your graph from part c) to estimate the maximum area for a rectangle with your given perimeter.
e) Create an equation to model this problem where y is the area and x is the width. You must find a way to calculate the length using the width (x). When you have created your equation, graph the equation using the $y=k e y$.

Your Equation: \qquad Does your equation match the data?
f) Using $\mathcal{T a b l e} S$ et and $\mathcal{T a b l e}\left(2^{\text {nd }}\right.$ graph), find the maximum are a for a figure with your given perimeter. What is the maximum area?
g) In your groups, make a summary poster or transparency of your width/are a plot and the equation you developed. Address how the significant parts of the graph relate to the rectangles generated.
6) Based on the class presentations, what generalizations or conclusions can you make about maximizing areas of fixed perimeter lengths.
-Page 2 -
Greatest Area

