Name .	 	
Class	 	

Problem 1 – Exploring Vertex Form

Grab the parabola on page 1.3 by the vertex (the cursor should change to \div) and move the parabola to each quadrant. The equation will be given in vertex form: $y = (x - h)^2 + k$.

Record four different equations for the parabola in each quadrant.

Quadrant I	Quadrant II	Quadrant III	Quadrant IV

Use the vertex form of the equations to answer the questions below.

- **1.** In which quadrants is *h* positive?
- **2.** In which quadrants is *k* positive?

Problem 2 – Happy and Sad Parabolas

On page 2.2, you will see examples of a "happy" parabola and a "sad" parabola. On page 2.4, grab the parabola by one of its branches (the cursor should change to \mathbf{z}). Make the "happy" parabola wider and narrower by moving farther or closer to the y-axis. Make the parabola open down, "sad" by dragging below the x-axis. Record four "happy" and four "sad" parabolas.

"Happy" Parabolas	"Sad" Parabolas	

3. How does the equation change when the parabola is wider or narrower?

- **4.** For what values of a is the parabola "happy" (opens up) or "sad" (opens down)?
- **5.** Is $f(x) = 3.5(x-2)^2 + 5$ a "happy" or "sad" parabola? How do you know?
- 6. Tell whether the following parabolas open up or down.

$$a(x) = 2.5x^2 - 5$$

$$b(x) = 6 + 3(x - 3)^2$$

$$c(x) = -(x-2)^2 - 5$$

$$d(x) = 7(x+1)^2 - 1$$

Extension – Parabola Hunt

For each of the points given on page 3.2, find an equation of a "happy" parabola so that the vertex of the parabola is located at the given point. Then, find an equation of a "sad" parabola at each vertex point. Use integer values for *a*, *h*, and *k*. Check your work using the sliders on the right side of the screen.

Point 1	Point 2	Point 3	Point 4

Compare your equations with a classmate. Using all of your equations listed above, rank the parabolas from widest to narrowest.

Bonus: Find the equation of a parabola that passes through any two of the labeled points on page 3.2.