EXPLORING THE RELATIONSHIP BETWEEN MASS AND VOLUME WITH THE TI-NSPIRE

TEACHER NOTES
Teaching time:
Topic:
Level:
Prerequisite Knowledge: The student will be expected to have a working knowledge of the concept of density and the units associated with this quantity.

Materials:

Objectives:
Students will learn the following skills:

1. enter data into lists
2. name lists
3. use formulas to populate data
4. determine regression equations
5. graph data
6. plot regression lines
7. use the calculator application

Discussion:

Density is defined as the mass per unit volume. Density is often measure in g / mL or $\mathrm{g} / \mathrm{cm}^{3}$ for solids and liquids and in g / L for gases. Density of a substance is considered to be an identifying physical property. Each substance has its own unique density, therefore substances can be often be identified by determining their density. The density of a substance is calculated by dividing the mass by the volume using the formula:

$$
\mathrm{D}=\frac{\mathrm{m}}{\mathrm{v}}
$$

Teaching Tips:

Answers:
Part I
$\mathrm{m}=2.70 \mathrm{~g} / \mathrm{mL}$
$\mathrm{b}=0.00$
$r=1.00$
$\mathrm{m}=.997 \mathrm{~g} / \mathrm{mL}$
$b=0.00$
$r=1.00$
Questions: density.

Part II

Students will need a review prior to the activity on the appropriate units for mass, volume, and

1 \& 2. The values of b in Parts I \& II are both zero, because when the mass equals zero the volume must be equal to zero, because none of the substance would be present.
3 \& 4. The calculated density values are the same because as either mass or volume change, the other changes correspondingly, thus the density is constant.
5 \& 6. Changing the mass or volume does no \dagger change the density. Density of a given substance is a constant.
7. Calculating density allows the identification of a substance because each substance has its own unique, identifiable density.
8. The silvery metal in Part I is aluminum.
9. The liquid in Part II is water.

