The Definition of Derivative:

According to the Standards:

Instructional programs from preK-grade 12 should enable students to:

- Recognize and use connections among mathematical ideas
- Use the language of mathematics to express mathematical ideas precisely

In grades $\mathbf{9 - 1 2}$ students should

- Students should develop an increased capacity to link mathematical ideas and a deeper understanding of how more than one approach to the same problem can lead to equivalent results.

This activity will have the TI-89 demonstrate the use of the difference quotient as the definition of the derivative.

Objective: Establish $\lim _{c \rightarrow 0} \frac{f(x+c)-f(x)}{c}=f^{\prime}(x)$ as the same as the shortcut symbolic derivatives.

1. Go to the $\mathrm{Y}=$ screen and input $y 1=x^{2}+2 x-3$

2. The Limit command is found in the F3: Calc Menu. You need the function, variable, value it approaches so $\lim _{c \rightarrow 0} \frac{y 1(x+c)-y 1(x)}{c}$ would be entered as: $\lim ((y 1(x+c)-y 1(x)) / c, c, 0)$
3. Go to the homescreen, input, and press enter

4. Go back to the homescreen and let the TI-89 do the derivative

5. You need to input the function, variable so $d(\mathrm{y} 1(\mathrm{x}), \mathrm{x})$, then press enter:

What you'll see on the screen in front of you are both results, in slightly different but equivalent forms.

Try This:

Go back to $\mathrm{Y}=$ window and change the expression in Y 1 , then reevaluate whatever expression you choose to put in using both the limit definition and then the command generated derivative. You should see the same results:

1. $\operatorname{Sin}(\mathrm{x})$
2. $e^{2 x}$
3. $\ln (3 x-2)$

Answers to Try This:

All work exactly as they should: $1: \operatorname{Cos}(\mathrm{x}) 2: 2 e^{2 x} \quad 3: 1 / \mathrm{x}$
Interesting note: If you use the ALPHA-E instead of the Diamond-X to get to euler's function the results will also include $\ln (\mathrm{e})$ in the answer.

