\qquad
\qquad

Problem 1 - Function Notation with Trigonometric Functions

Function notation is a way of naming functions and then using these names to describe changes. For example, the equation $y=\sin (x)$ can be rewritten as $f(x)=\sin (x)$. The $f(x)$ part is read as the function named f in terms of the variable x.

If $f(x)=\sin (x)$, what would be the function notation of $f(x)+4 ? f(x+2)-6$?
By substitution, $f(x)+4=\sin (x)+4$ and $f(x+2)-6=\sin (x+2)-6$.

- If $g(x)=\sin (x)+\cos (x)$, what is the function notation of $g(x-4)-12$?

Problem 2 - Transformational Graphing Part I

The top of page 2.2 shows the graph of $\mathbf{f}(x)=\sin (x)$. Move to the bottom of the page and graph the function $\mathbf{f 2}(x)=-\mathbf{f 1}(x)$.

- Rewrite $\mathbf{f 2}(x)$ using function notation.
- How is the graph on the bottom different from the graph on the top?

Now change $\mathbf{f 1}(x)$ to $\cos (x)$ and then to $\tan (x)$.

- Overall, what effect does multiplying the function by -1 have on the graphs?

Problem 3 - Transformational Graphing Part II

The top of page 3.2 shows the graph of $\mathbf{f} \mathbf{1}(x)=\sin (x)$. Move to the bottom of the page and graph the function $\mathbf{f} \mathbf{2}(x)=\mathbf{f} \mathbf{1}(x)+2$.

- Rewrite $\mathbf{f 2}(x)$ using function notation.
- How is the graph on the bottom different from the graph on the top?
- What would happen if you change 2 to -1 ?

Now change $\mathrm{f} 1(x)$ to $\cos (x)$ and then to $\tan (x)$.

- What effect does adding or subtracting a constant outside of the function have on the graphs?

Problem 4 - Transformational Graphing Part III

The top of page 4.2 shows the graph of $\mathbf{f}(x)=\sin (x)$. Move to the bottom of the page and graph the function $\mathbf{f} \mathbf{2}(x)=\mathbf{f 1}(x-90)$.

- Rewrite $\mathbf{f 2}(x)$ using function notation.
- How is the graph on the bottom different from the graph on the top?
- What would happen if you change -90 to +90 ?

Now change $\mathbf{f 1}(x)$ to $\cos (x)$ and then to $\tan (x)$.

- What effect does adding or subtracting a constant inside the function have on the graphs?

Problem 5- Transformational Graphing Part IV

The top of page 5.2 shows the graph of $\mathbf{f}(x)=\sin (x)$. Move to the bottom of the page and graph the function $\mathbf{f 2}(x)=2 \mathbf{f 1}(x)$.

- Rewrite $\mathbf{f} \mathbf{2}(x)$ using function notation.
- How is the graph on the bottom different from the graph on the top?
- What would happen if you change 2 to $\frac{1}{2}$?

Now change $\mathrm{f} 1(x)$ to $\cos (x)$ and then to $\tan (x)$.

- What effect does multiplying the function by a constant have on the graphs?

Problem 6- Transformational Graphing Part V

The top of page 6.2 shows the graph of $\mathbf{f} \mathbf{1}(x)=\sin (x)$. Move to the bottom of the page and graph the function $\mathbf{f} \mathbf{2}(x)=\mathbf{f 1}(2 x)$.

- Rewrite $\mathbf{f 2}(x)$ using function notation.
- How is the graph on the bottom different from the graph on the top?
- What would happen if you change 2 to $\frac{1}{2}$?

Now change $\mathbf{f 1}(x)$ to $\cos (x)$ and then to $\tan (x)$.

- What effect does multiplying the variable of the function by a constant have on the graphs?

Exercises

Decide what transformations would need to take place for the graph of $f(x)=\cos (x)$ to match each of the following functions.
a. $f(x)=2 \cos (3 x)$
b. $f(x)=-4 \cos (x-5)$
c. $f(x)=2 \cos (x+4)-3$
d. $f(x)=-3 \cos \left(\frac{1}{5} x\right)+9$

