\qquad
\qquad

Create a scatter plot

The table on the right shows the life expectancies	Year	Person	Men	Women
from 1900 to 2004 for men, women, and people	1900	49.2	47.9	50.7
(men and women combined). Investigate the	1910	51.5	49.9	53.2
relationship between the year and the life	1920	56.4	55.5	57.4
expectancy for a person living during that year by	1930	59.2	57.7	60.9
creating a scatter plot.	1940	63.6	61.6	65.9
	1950	68.1	65.5	71
	1960	69.9	66.8	73.2
	1970	70.8	67	74.6
	1980	73.9	70.1	77.6
	1990	75.4	71.8	78.8
	2000	77	74.3	79.7
	2001	77.2	74.4	79.8
	2002	77.3	74.5	79.9
	2003	77.4	74.7	80
	2004	77.8	75.2	80.4

Step 1: Press STAT ENTER. Enter the data for Year in list L1 and the data for Person in list L2.

L1	L2	L3	3
1900	49.2	-107	
1910	51.5		
1950	5.2		
1950	6		
1960	$\underline{69}$		
L3(1)=			

Step 2: Create the scatter plot by pressing 2nd [STAT PLOT] and set up Plot1 as shown on the right.

Press ZOOM and select ZoomStat to adjust the window settings appropriately.

- Describe the relationship between the two variables.

Draw a line that fits the data

Step 3: Draw a line that fits the data as well as possible.
Press STAT \square to access the CALC menu and then choose Manual-Fit.

Step 4: Move the cursor to one side of the scatter plot and anchor the point by pressing ENTER.

Step 5: Move the cursor to the other side of the scatter plot and press ENTER to anchor the right endpoint. The equation of your line will appear in the top left corner.

Step 6: Modify the graph until you have a line that fits the data better than the line shown to the right. This line will be your line of "better fit."

Step 7: Press 2nd [Quit] to finish the Manual Fit function. The equation of your line is saved in Y_{1}.

- What is the equation of your line?

Compute the sum of the squares of the residuals

Step 8: Compare the coordinates of the points on your line with those of the original data by entering $\mathbf{Y}_{1}\left(\mathrm{~L}_{1}\right)$ in the top of list L3. Press ENTER.

L1	L2	[19	3
1900	49	------	
1910	5		
1920	5		
1930	5		
1940	64		
1950	6日		
1960	70		
L3 $=Y 1$ (L1)			

Residuals are the differences between the actual y-values of the data set and the corresponding y-values predicted by your line of "better fit."

Residual = Actual value $\boldsymbol{-}$ Predicted value

- If a data point is above the line, is the value of the residual positive or negative?
- If a data point is below the line, is the value of the residual positive or negative?

Step 9: Find the square of these residuals. Move to the top of list L4 and enter (L2 - L3) ${ }^{2}$. Press ENTER.

Step 10: Return to the Home screen. Find the sum of the squares of the residuals. Press 2nd [LIST] and under the MATH menu select sum(. Then enter L4). Press ENTER.

- What is your sum?

Did you get a value lower than the one shown? If so, then you found a line of "better fit."

L2	\|L3	4	4
49	4 B		
5	51		
5	5		
罡	60		
80	宿		

- Compare the sum of the squares of your residuals with those of your classmates. What was the lowest sum?
- How many points are above their line? Below their line?
- Which data points do you think increase the sum of the squares the most?
- How do the values in list L4 for these data points compare to the others?
- Where are these points located in relation to the line?
- What do you notice about the distribution of the data points around the line (i.e., above vs. below the line, or equal spacing vs. clusters)
- To have the smallest sum, how do the points need to be distributed?

Square It Up!

Find the line of best fit

Step 11: There is a line of best fit. That line is called the Least Squares Regression Line, often written as LSRL.

Press STAT \square and select LinReg(ax+b) from the CALC menu. Then enter L1, L2, Y2. Press ENTER.

This command computes the equation of the Least Squares Regression Line and stores it in Y2. Graph this line, along with
 your line of "better fit," and the scatter plot.

If using MathPrint ${ }^{\text {TM }}$ OS:

```
Choose LinReg(ax+b) from the CALC menu. A screen similar to that shown at the right will be displayed. Enter the Xlist, Ylist, a location (Y2) to store the regression equation, and then select Calculate.
If using MathPrint OS:
```

and then select Calculate.

Linketrax +b Xlist:Lz Ylist:Ly Frestist: Store Re9ED: Ealculate

- How does the graph of the LSRL compare with the graph of your line of "better fit?"

Step 12: Repeat Steps 8-10 to find the sum of the squares of the residuals for the LSRL which is stored in Y 2 .

- What is the value of the sum of squares?
- How well did you do? Does your sum of squares compare favorably to the sum of squares for the calculator-generated LSRL equation?

Homework

Analyze the two additional sets of data in the spreadsheet by using Manual-Fit to draw a line that fits the data. Compute the sum of the squares for your equation. Compare your answers each time to the Least Squares Regression Model and the sum of the squares for the regression equation.

	Women	Men
Your equation		
Sum of squares		
Calculator equation		
Sum of squares		

