Transformations

Student Investigation

$$
\begin{array}{llllll}
7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

Student

Introduction

Transformation means a change in form or appearance. Common transformations when dealing with functions include:

The aim of this activity is to provide an understanding of the algebra underpinning transformations. The technique involves the consideration of a single point and the effect it has on the general form or appearance of an entire family of points defined by a rule or function. A video tutorial is available to help set up your TI-Nspire file.

https://bit.ly/TI-transformations

Set up

Open your "Transformations" document created using the video link above.

Point $\mathrm{P}\left(x_{1}, y_{1}\right)$ is on the parabola: $f_{1}(x)=x^{2}$
Point P has undergone a transformation such that:

$$
P^{\prime}\left(x^{\prime}, y^{\prime}\right) \text { such that: } \quad x^{\prime}=2 x_{1} \quad \text { and } \quad y^{\prime}=y_{1}
$$

The text tip on P^{\prime} provides the transformation details.
Edit the transformation for your point P^{\prime} to match these conditions.
Drag point P along the parabola and observe the coordinates of P^{\prime}.
Point P^{\prime} is described as a dilation, "parallel to the x axis" or "away from the y axis" by a factor of 2 .
In the screen opposite, the path of point P^{\prime} has been traced using the Trace (Geometry) tool.

Determining Equations

Question 1.

a) Given $x^{\prime}=2 x, y^{\prime}=y$ and $y=x^{2}$, determine the relationship between x^{\prime} and y^{\prime}. Check your answer using your calculator and the corresponding transformation tools on the calculator.
b) Based on your answer to the previous question, describe the transformation from $y=x^{2}$ to $y=4 x^{2}$. Test your answer using your calculator and the transformations file.

Question 2.

Edit the transformation for point P^{\prime} such that: $x^{\prime}=x+2$ and $y^{\prime}=y$
a) Describe the location of point P^{\prime} in relation to P.
b) Determine the equation for the path of point P^{\prime}.

Question 3.

Edit the transformation for point P^{\prime} such that: $x^{\prime}=x$ and $y^{\prime}=y-3$
a) Describe the location of point P^{\prime} in relation to P.
b) Determine the equation for the path of point P^{\prime}.

Question 4.

Point P is dilated by a factor of 3 away from the x axis, then translated 2 units in the negative x direction. Use your calculator to observe the path of point P^{\prime} and determine the equation for $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$.

Question 5.

Point P is translated by 2 units in the negative x direction, then dilated by a factor of 3 away from the x axis.
Use your calculator to observe the path of point P^{\prime} and determine the equation for $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$.

Question 6.

Based on your answers to Questions 4 and 5, does the order of transformations matter?

Question 7.

$P(x, y)$ is transformed such that $x^{\prime}=x$ and $y^{\prime}=2 y$, use your calculator to observe the path of point P^{\prime}.
a) Determine the equation for $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$.
b) Write an equivalent transformation, based on your equation in part (a).

Question 8.

$P(x, y)$ is transformed such that $x^{\prime}=x-3$ and $y^{\prime}=-y$, use your calculator to observe the path of point P^{\prime}.
a) Determine the equation for $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$.
b) State the corresponding transformations.

Extension

Transformations can also be described using matrices. Insert a Calculator Application into your transformation document. The matrices template can be found in the maths templates, notice the other matrices templates adjacent to this 2×2 template highlighted opposite.

| 1.1 | 1.2 | TTranstor_ons $\quad \mathrm{PAD} \square \times$ |
| :--- | :--- | :--- | :--- |

$\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y\end{array}\right]+\left[\begin{array}{c}-1 \\ 2\end{array}\right]\left[\begin{array}{c}x \\ y^{x} \\ y^{\prime}\end{array}\right]$

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

Press enter to see the calculator result.

Question 9.

Use the calculator result to determine the equation for the 'matrix' transformations when applied to point $P(x, y)$ where $y=x^{2}$.

Question 10.

Use the calculator result to determine the equation for the 'matrix' transformation:
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$ when applied to point $P(x, y)$ where $y=x^{2}$.
Question 11.
Use the calculator result to determine the equation for the 'matrix' transformation:

$$
\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \text { when applied to point } P(x, y) \text { where } y=x^{2} .
$$

