

1.

Number to try dividing into 60	Answer	Factor? Yes or No 'Gozinter'	Any factors found
1	60	Yes	1,60
2	30	Yes	2, 30
3	20	Yes	3, 20
4	15	Yes	4, 15
5	12	Yes	5, 12
6	10	Yes	6, 10
7	8.571	No	
8	7.5	No	
9	6.66	No	
No more to try			

The factors of 60 are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

- 2. 12
- 3. The factors of 60 are **1**, 2, 3, **4**, 5, **6**, **10**, **12**, **15**, **20**, **30**, **60** The factors in bold are not prime. 2, 3 and 5 are prime factors of 60.

4.

Number	List of factors Circle any that are prime numbers	How many factors does this number have altogether?	Any PRIME factors found	√Number from your TI-15
24	1, 2, 3, 4, 6, 8, 12, 24 Only 2 and 3 are prime	8	2, 3	$\sqrt{24} = 4.89$
17	1, 17	2	17	√17 = 4.12
36	1, 2, 3, 4, 6, 9, 12, 18, 36	9	2, 3	$\sqrt{36} = 6$
25	1, 5, 25	3	5	$\sqrt{25} = 5$
50	1, 2, 5, 10, 25, 50	6	2, 5	$\sqrt{50} = 7.07$
64	1, 2, 4, 8, 16, 32, 64	7	2	$\sqrt{64} = 8$
72	1, 2, 3, 4, 6, 8, 9, 12, 18, 36, 72	12	2, 3	√72 = 8.48
Add other numbers to try				

5. Perfect squares have an ODD number of factors because the 'middle' factor is repeated.

WS¹

- 6. Any perfect square.
- 7. You can stop when the numbers start to repeat.

- a) 1 x 72, 2 x 36, 3 x 24, 4 x 18, 6 x 12, 8 x 9. The next number to try would be 9 and we have it already, so we can stop.
 - b) 1 x 2 x 36, 1 x 3 x 24, 1 x 4 x 18, 1 x 6 x 12, 1 x 8 x 9.
 2 x 2 x 18 not all different, 2 x 3 x 12, 2 x 4 x 9, 2 x 6 x 6 not different, 3 x 4 x 6.
 Encourage students to work systematically.
 - c) If 1 is allowed as a factor, then adding in a multiplier of 1 to any of the above with 3 different not including 1 gives 1 x 2 x 3 x 12, 1 x 2 x 4 x 9, 1 x 3 x 4 x 6. If 1 is not included, it is not possible to have 4 different factors, nor 5 of course.

d)

Number	As the product of PRIME factors	How many factors does this number have altogether?	
24	$2 \times 2 \times 2 \times 3 = 2^3 \times 3^1$	8	
17	17 ¹ – Remember 1 is not prime	2	
36	$2 \times 2 \times 3 \times 3 = 2^2 \times 3^2$	9	
25	$5 \times 5 = 5^2$	3	
50	$2 \times 5 \times 5 = 2^1 \times 5^2$	6	
64	$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^{6}$	7	
72	$2 \times 2 \times 2 \times 3 \times 3 = 2^3 \times 3^2$	12	

There is a pattern to see here to find the total number of factors.... Add 1 to each exponent and then multiply, the answer is the number of factors. e.g. if the number is $2^a \times 3^b$ then the number has $(a + 1) \times (b + 1)$ factors. The same applies if there are more than two primes in the factorisation.

- 2. a) 16
 - b) 36
 - c) 90
 - d) 4 200
- 5. a) $30 = 2 \times 3 \times 5$
 - b) $48 = 2 \times 2 \times 2 \times 2 \times 3 = 2^4 \times 3$
 - c) $67 = 1 \times 67$ and is prime

6. $2^5 = 32$ which has 6 factors. They are 1, 2, 4, 8, 16 and 32. Note the exponent 5 + 1 = 6

3⁵ or any prime to the power 5 will have 6 factors.

Any factorisation with a prime to the power 2 multiplied by any other prime to the power 1 will have $(2 + 1) \times (1 + 1) = 6$ factors. Students may use trial and error of course.

- 7. Any number which is the product of any 6 different primes. e.g. 2 x 3 x 5 x 7 x 11 x 13 etc
- 8. The smallest number with 6 factors is $2^2 \times 3^1$ which is 12. $2^1 \times 3^2 = 18$ etc.
- 9. This is quite difficult but since $20 = 4 \times 5$ we could try $2^{(5-1)} \times 3^{(4-1)} = 2^4 \times 3^3 = 16 \times 27 = 432$, but is there a smaller number? Since $20 = 5 \times 2 \times 2$, we could try $2^{(5-1)} \times 3^1 \times 5^1$ which is $16 \times 3 \times 5 = 240$ and this is the smallest one with 20 factors.

- 1 is not prime by definition, 4 is not because it can be divided by 2 as well as itself and 1,
 15 is not (factors of 3 and 5), 23 is , 6.5 is not a whole number, 133 is not because it can be divided by 7.
- 2. $2^2 \times 3^4$
- 3. $3^5 \times 7^2 = 3 \times 3 \times 3 \times 3 \times 3 \times 7 \times 7 = 11907$
- 4. 4 is not a prime number.
- 5. $30 = 2 \times 3 \times 5$

 $180 = 2 \times 2 \times 3 \times 3 \times 5 = 2^2 \times 3^2 \times 5$

6. $24 = 2^3 \times 3$ and it has 8 factors which are 1, 2, 3, 4, 6, 8, 12 and 24

 $2^{1} \times 3^{3} = 54$ has 24 factors

