\qquad
\qquad

Problem 1 - Law of Sines

1. On page 1.3 you are given $\triangle A B C$ with the measure of all angles, sides and some calculated ratios. Drag the points A, B and C and observe any changes that occur.

2 Make a conjecture relating $\frac{\sin A}{a}, \frac{\sin B}{b}$, and $\frac{\sin C}{c}$.

Problem 2 - Application of the Law of Sines

3. State the Law of Sines.
4. The distance between two fire towers is 5 miles. The observer in tower A spots a fire $52^{\circ} \mathrm{SE}$ and the observer in tower B spots the same fire $29^{\circ} \mathrm{SW}$. Find the distance of the fire from each tower.

5. A tree leans 20° from vertical and at a point 50 feet from the tree, the angle of elevation to the top of the tree is 29°. Find the length, t, of the tree.

6. A boat is spotted by lighthouse A at $25^{\circ} \mathrm{NE}$ and spotted by lighthouse B at $50^{\circ} \mathrm{NW}$. The lighthouses are 10 miles apart. What is the distance from the boat to each lighthouse?

Sine. It's the Law.

Extension - Proof of the Law of Sines

We will now prove the Law of Sines. We will prove that $\frac{\sin (A)}{a}=\frac{\sin (C)}{c}$. You can use similar methods to show that $\frac{\sin (A)}{a}=\frac{\sin (B)}{b}$ and $\frac{\sin (B)}{b}=\frac{\sin (C)}{c}$. You are given $\triangle A B C$, altitude $B D$, and sides a and c.

7. Using right triangular trigonometry, what is the sine ratio for $\angle A$?
8. Using right triangular trigonometry what is the sine ratio for $\angle C$?
9. What side is common to the sine of A and the sine of C ? Solve for this common side in the ratio for sine of A and sine of C.
10. Since the side from Exercise 13 is common to both equations we can set them equal to each other. Set your two equations equal and try to show that $\frac{\sin (A)}{a}=\frac{\sin (C)}{c}$.

