Activity 14

Discovering the Derivative of the Sine and Cosine Functions

The slope of the tangent to a curve at a point is defined to be the derivative. By calculating the derivative of a curve at many points, a new function can be obtained. By finding the equation that will fit the points, the derivative of $f(x)=\sin (x)$ and $g(x)=\cos (x)$ can be discovered.

Exploration

1. Open a new TI InterActive! document. Title this document Derivatives of the Sine and Cosine Functions. Add your name and the date to this document
2. Select Math Box and define $f(x)$: $=\sin (x)$.
3. In a math box, define $\mathrm{x} 1:=\{1\}$. This will give x a value of 1 .
4. In a math box, store $\mathbf{x} \mathbf{1} \rightarrow \mathrm{L} 1$.
5. In a math box, calculate the numerical derivative of $f(x)$ at $x 1=1$ and store it in L2 using the syntax $\mathbf{n D e r i v}(f(x \mathbf{1}), \mathbf{x 1}) \rightarrow \mathbf{L 2}$. Close the Math Palette.
6. Select Graph
 Define $\mathrm{y} 1(\mathrm{x}):=\mathrm{f}(\mathrm{x})$. Click on the tab Stat Plots. Enter L1 in the first field and L2 in the second field.
7. Click on Zoom Trig $\frac{h}{4}$. Sketch $f(x)$ and the scatter plot L1, L2 on the provided grid. Click on Save to Document .
8. Double-click on $\mathrm{x} 1:=\{1\}$ and change this list to $\mathrm{x} 1:=\{0,1,2,3,4,5,6\}$. Add the new slopes to your scatter plot on the same grid as question 7 .
9. Double-click on x1: $=\{0,1,2,3,4,5,6\}$ and change the list to x1: $=\{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6\}$. Add the new slopes to your scatter plot on the same grid as question 7 .
10. Double-click on x1: $=\{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6\}$ and change to $\mathrm{x} 1:=\operatorname{seq}(\mathrm{x}, \mathrm{x},-2 \pi, 2 \pi, \pi / 12)$. This defines x to be the arithmetic sequence of numbers from -2π to 2π in steps of $\pi / 12$.
Note: π can be found under α.

Analysis

1. Double-click on the graph. Define $\mathrm{y} 2(\mathrm{x}):=$ your guess for the function that would connect the data in the scatter plot. Click the checkbox to the left of y2 to select the equation. When you are satisfied with your graph, record your function.
$y 2(x)=$ \qquad
2. Define $\mathrm{y} 3(\mathrm{x}):=\mathrm{nDeriv}(\mathrm{f}(\mathrm{x}), \mathrm{x})$. Click in the box to the left of $y 3$ to select the equation. Does y3 match $y 2$?
3. Click on Save to Document
4. When $f(x)=\sin (x), f^{\prime}(x)=$ \qquad
5. If $f(x)=\cos (x)$, predict $f^{\prime}(x)$.
6. Double-click on $f(x):=\sin (x)$, and redefine $f(x):=\cos (x)$. How does this change your graph?
7. Double-click on the graph. Define $\mathrm{y} 2(\mathrm{x}):=$ your guess for the function that would connect the data in the scatter plot. When you are satisfied with your graph, click Save to Document. Record your function. $y 2(x)=$ \qquad
8. When $f(x)=\cos (x), f^{\prime}(x)=$ \qquad
9. Save this Document as derivatives.tii. Print a copy of this document.

Additional Exercises

Use the previous steps to discover the derivative of each of the following functions.

1. Define $g(x):=\sin (2 x)$.
2. What is your guess for the derivative?
$y 2(x)=$ \qquad
3. When $g(x)=\sin (2 x), g^{\prime}(x)=$ \qquad
4. Define $g(x):=\sin (3 x)$.
5. What is your guess for the derivative? $y 2(x)=$ \qquad
6. When $g(x):=\sin (3 x), g^{\prime}(x)=$ \qquad
7. Define $g(x):=\sin (5 x)$.
8. What is your guess for the derivative?
$y 2(x)=$ \qquad
9. When $g(x)=\sin (5 x), \mathrm{g}^{\prime}(x)=$ \qquad
10. Define $g(x):=\cos (2 x)$.
11. What is your guess for the derivative?
$y 2(x)=$ \qquad
12. When $g(x)=\cos (2 x), \mathrm{g}^{\prime}(x)=$ \qquad
13. Define $g(x):=\cos (3 x)$.
14. What is your guess for the derivative?
$y 2(x)=$ \qquad
15. When $g(x)=\cos (3 x), \mathrm{g}^{\prime}(x)=$ \qquad
16. Define $g(x):=\cos (5 x)$.
17. What is your guess for the derivative?
$y 2(x)=$ \qquad
18. When $g(x)=\cos (5 x), \mathrm{g}^{\prime}(x)=$ \qquad
19. If $f(x)=\sin \left(n^{*} x\right), \mathrm{f}^{\prime}(x)=$ \qquad
20. If $f(x)=\cos \left(\mathrm{n}^{*} x\right), \mathrm{f}^{\prime}(x)=$ \qquad
