

Discovering the Derivative of the Sine and Cosine Functions The slope of the tangent to a curve at a point is defined to be the derivative. By calculating the derivative of a curve at many points, a new function can be obtained. By finding the equation that will fit the points, the derivative of f(x) = sin(x) and g(x) = cos(x) can be discovered.

Exploration

- 1. Open a new TI InterActive! document. Title this document **Derivatives of the Sine and Cosine Functions**. Add your name and the date to this document
- 2. Select Math Box and define f(x): = sin(x).
- 3. In a math box, define x1: = {1}.This will give *x* a value of 1.
- 4. In a math box, store $x1 \rightarrow L1$.
- 5. In a math box, calculate the numerical derivative of f(x) at x1 = 1 and store it in L2 using the syntax **nDeriv(f(x1), x1)** \rightarrow L2. Close the Math Palette.
- 6. Select Graph . Define y1(x): = f(x). Click on the tab Stat Plots. Enter L1 in the first field and L2 in the second field.

- 7. Click on Zoom Trig . Sketch f(x) and the scatter plot L1, L2 on the provided grid. Click on Save to Document .
- 8. Double-click on x_1 : = {1} and change this list to x_1 : = {0, 1, 2, 3, 4, 5, 6}. Add the new slopes to your scatter plot on the same grid as question 7.
- 9. Double-click on x1: = {0, 1, 2, 3, 4, 5, 6} and change the list to x1: = {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6}. Add the new slopes to your scatter plot on the same grid as question 7.
- 10. Double-click on x1: = {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6} and change to x1: = seq(x, x, -2π , 2π , $\pi/12$). This defines *x* to be the arithmetic sequence of numbers from -2π to 2π in steps of $\pi/12$.

Note: π can be found under \square .

Analysis

- 1. Double-click on the graph. Define $y_2(x)$: = *your guess* for the function that would connect the data in the scatter plot. Click the checkbox to the left of y_2 to select the equation. When you are satisfied with your graph, record your function.
 - $y_2(x) =$ ______
- 2. Define y3(x):= nDeriv(f(x), x). Click in the box to the left of *y*3 to select the equation. Does *y*3 match *y*2?
- 3. Click on Save to Document
- 4. When $f(x) = \sin(x), f'(x) =$ ______
- 5. If $f(x) = \cos(x)$, predict f'(x).
- 6. Double-click on f(x): = sin(x), and redefine f(x): = cos(x). How does this change your graph?
- 7. Double-click on the graph. Define $y_2(x)$: = *your guess* for the function that would connect the data in the scatter plot. When you are satisfied with your graph, click Save to Document. Record your function.

y2(x) =

- 8. When $f(x) = \cos(x), f'(x) =$ _____
- 9. Save this Document as **derivatives.tii**. Print a copy of this document.

Additional Exercises

Use the previous steps to discover the derivative of each of the following functions.

- 1. Define $g(x) = \sin(2x)$.
- 2. What is your guess for the derivative?

 $y_2(x) =$ _____

- 3. When $g(x) = \sin(2x), g'(x) =$ _____
- 4. Define $g(x) := \sin(3x)$.
- 5. What is your guess for the derivative?

 $y^2(x) =$ _____

- 6. When $g(x) := \sin(3x), g'(x) =$ ______
- 7. Define $g(x) := \sin(5x)$.
- 8. What is your guess for the derivative?

 $y_2(x) =$ ______

- 9. When $g(x) = \sin(5x), g'(x) =$
- 10. Define $g(x) := \cos(2x)$.
- 11. What is your guess for the derivative?

 $y_2(x) =$ ______

- 12. When $g(x) = \cos(2x)$, g'(x) =_____
- 13. Define $g(x) := \cos(3x)$.
- 14. What is your guess for the derivative?

 $y_2(x) =$ _____

- 15. When $g(x) = \cos(3x), g'(x) =$ _____
- 16. Define $g(x) := \cos(5x)$.
- 17. What is your guess for the derivative?

 $y^2(x) =$ ______

18.	When $g(x) = \cos(5x), g'(x) =$	
19.	If $f(x) = \sin(n * x)$, f'(x) =	
20.	If $f(x) = \cos(n * x)$, f'(x) =	