

The \mathcal{P} cience of Racing Series Activities Created by Ten80 Education and Texas Instruments

Activity 3: Newton Knew

For race car engineers, $\boldsymbol{F}=\mathrm{m} \boldsymbol{a}$, is the backbone of their calculations. F is force, m is mass and a is acceleration. For example, selecting gear ratios relies on this relationship.

Race cars engine are limited in terms of both power and speed (expressed as revolutions per minute, or RPM). The RPM limits are set by the racing organization for some series like the F1 (16,000 RPM) Champ Cars, and Legends (10,200 RPM in Legends). In other series, the RPM limits are set by the individual teams.

Faster engines (i.e. higher RPM engines) produce more power, but they also stress the parts more which makes them more likely to disintegrate during a race. How fast is fast enough to stay ahead of other racers but not so fast that the engine blows up during a 400 mile race? The answer is very carefully calculated and a closely guarded secret within a race team.

In selecting gears, the race engineer faces a compromise. For any given engine, the choice is between one of the following two options.

High acceleration rates but low top speed, OR

Lower acceleration rates but higher top speed
The choices are mutually exclusive as illustrated below.
Recall that the slope of a line for speed-time is acceleration.

Activity at a Glance:
Grade: 6-9
Subject: Phys Science
Topic: $\mathrm{F}=\mathrm{ma}$
Time: $2 \times 45-$ min periods

Visit the engineers and educators of Ten80 Education at www.ten80education.com

Materials:

-TI-73 Explorer

- Student Handout
-Transparencies

with sample data: Newton Knew_3A and 3B
- Background Paper: F=ma Article: Science of Racing

Optional for collecting your own data:
-RC (radio controlled) car (1/16th or smaller is suggested)

- Scale to weigh the RC car
-Stop watches
- Tape measure (meter stick, or yard stick, etc.)

$\mathrm{F}=\mathrm{m} \mathrm{a}$

The increments between ratios available are very small (4.20, 4.19, 4.17, 4.15, etc.). The optimal choice for any particular race track requires a very complex set of calculations combining Newton's Second Law for the race car on a given track and weather conditions, plus statistical analysis of engine tests (for power, torque, and durability).

The gear ratio is defined as the (engine RPM) / (drive wheel RPM), which is determined by the gear-set that is placed in the differential of the race car. The engine RPM is 10,200 in this example. Only three gear ratios are shown in this sketch, whereas a top of the line professional race team may have 60 or 70 different gear-sets for each race car.

Activity at a Glance:

Grade: 6-9
Subject: Phys Science
Topic: $\mathrm{F}=\mathrm{ma}$
Time: 2×45-min periods

Visit the engineers and educators of Ten80 Education at www.ten80education.com

Materials:

-TI-73 Explorer

- Student Handout
-Transparencies

with sample data: Newton Knew_3A and 3B
- Background Paper: F=ma Article: Science of Racing

Optional for collecting your own data:
-RC (radio controlled) car (1/16th or smaller is suggested)

- Scale to weigh the RC car
- Stop watches
-Tape measure (meter stick, or yard stick, etc.)
\qquad

1. State the Objectives:

Create a graph of data you collect (a mathematical model) which can be used to make predictions about the speed and acceleration of radio-controlled (RC) cars of different weights. Distinguish between speed, velocity and acceleration.
Substitute variables for numbers.

2. State the Problem:

For race car engineers, $\boldsymbol{F}=\mathrm{m} \boldsymbol{a}$, is the backbone of the vast majority of calculations. The selection of gear ratios is one example. How does this formula define the relationship between the weight (mass) of a vehicle and its acceleration, i.e., how long it takes to accelerate from standing start to a constant (maximum) speed? What is the relationship between force, speed, mass, distance and acceleration?

3. Plan an Investigation:

Set up a track on which a weighted vehicle will travel from zero speed to top speed. Time the event. From the collected data, determine top speed, the time it took to reach top speed and its rate of acceleration. Use the data to create a mathematical model in the form of a graph to show the relationship between speed, time, distance and acceleration.

4. Make a graph in your Science of Racing Log.

Make a graph showing what you think the motion of the car is when it begins to move at a red light and travels forward on a 45 mile per hour road.

These activities are designed to be used with the TI 73 Explorer but are easily adapted to other TI graphing calculators. Educators are invited to Visit ten80education.com for more lessons on the Science of Racing and to join the 1080 Education community of engineers, scientists and educators.

 \section*{The Science of Racing

Newton Knew

}
Newton Knew

}Student Investigation \qquad -

5. Set up your investigation.

- Make a plan for collecting data. Assemble materials and practice so that team members know how to read watches, scales, and tape measures and are familiar with the controls on the vehicle.
- Assign roles: Each team requires a driver, timers, a data recorder, calculator of the human kind and a crew chief who keeps track of all materials and schedules for completion of assignments.

6. Set Up the Car and Track

- From START, mark the Finish Line\# at approximately 240 inches and mark with tape. This is the line at which timers stop their watches. The car should be up to top speed and continue moving at that speed past the Finish Line. (These are suggested measurements and can be adjusted to meet size constraints of your classroom or hallways).
- Add weights to a radio controlled car. The weights can be washers taped to the car or soda bottles with water added. Each team should make a run with a different weight car.

See transparency _ Newton Knew_3A for track plan

Vocabulary:

Speed

Distance traveled in some amount of time or speed $=d / t$

Velocity

Speed in some direction.

Average speed

 describes speed of motion when speed is changing.Instantaneous
speed is speed at a given point of time.

Constant Speed

 describes motion in which speed is not changing.Constant Velocity describes motion in which neither speed or direction are changing.

O'he Science of Qacing Newton Knew

Student Investigation

7. Collect Data

- Have three timers time each test run.
- Start car at start line and begin timing at Time Start Line.

To learn more about the Science of Racing, contact Professor Pi at

ProfPi@ten8Oeducation.com

Data Table A

Time of acceleration (t_{a}) In seconds	Rate of acceleration (a) In/sec ${ }^{2}$	Average Time (t_{f}) in seconds	Average Speeds (S_{w}) In inches/second	Weight (W) in ounces	Distance (d) In inches
		Timer \#1 Timer \#2 Timer \#3 Time Total Time Average			240 in
		Timer \#1 Timer \#2 Timer \#3 Time Total Time Average			240 in
		Timer \#1 Timer \#2 Timer \#3 Time Total Time Average			240 in

O'he Science of Racing Newton Knew

Data Analysis: Use Professor Pi's Data

8. Calculate and store Average Times (mean) values

- Create time lists in the List Editor. LIST
o Under L1, enter three times for Run \# 1: the car running the first part of the course and under L2, enter three times for run \# 2: the car running the second part of the course.
o Return to the home screen [2nd[QUIT][CLEAR and calculate the average time for each run.
o 2nd[sTAT] DD3
o 2nd [sTAT] ENTER ENTER for the average of run \#1 times
- 2nd [STAT] DD
- 2nd [STAT] ENTER ENTER for the average of run\# 2 times
- Store these average times for later recall.
o On the home screen, use the up arrow keys Δ to scroll up to previous entries and highlight the average for L1. Press enter ENTER to place that number at the bottom of the screen. Press STO 2nd [TEXT] ENTER $\square \square \square \square$ ENTER ENTER
o Repeat these steps to store the averages for L2 and L3
o The values stored for the average times for 3 runs of decreasing weights are A, B and C. (You may choose other variables.)

9. You have your own data. The following directions will use Professor Pi's sample data to demonstrate steps you might take to solve the problem.

Read "Acceleration: Background Understanding"

 See Transparency _ Newton Knew _ 3A to view data.

Use Transparency Hitting the Mark_2A for Sample Data Set

READ the background article, "Acceleration", Learn how it "looks" on a graph.

Visit the engineers and educators of Ten80 Education at www.ten80education.com 1080 Education Inc.* Saratoga Springs, NY* info@ten80education.com * toll free 877-math2go

The Science of Racing Newton Knew

10. Define a Relationship between speed of the car and its weight. What top speed can you expect from a car as its weight varies?

Professor Pi planned to make three test runs with $1 / 16$ scale radio controlled cars that weighed 30, 45 and 60 ounces. Before each run, the car's exact weight was recorded. The distance of each run was 240 inches.

- Professor Pi collected data using scale model R/C cars; the data used for illustration is taken from 1/16th scale R/C cars used in the 1080 Education kits.
- In order to define a relationship between the weight of the car he used and its speed, he and his students ran speed tests that generated the following data: (you may obtain your own data by doing the Time Laps Activity).

$\frac{\text { Weight }}{88.7 \text { oz }}$	
23.6	82.82

- From this data using their TI73 Explorer they generated a linear equation for the line passing through the data points in the form of:
$Y=a X+b$; where $Y=$ speed, and X is the car's weight
- With the data above we obtain following equation for the line that passes through the Speed-Weight data points:

$$
\begin{aligned}
\mathrm{Y} & =\mathrm{a} \mathrm{X}+\mathrm{b} \\
\text { Speed } & =(-.529)(\text { Weight })+95.31 \text { or } \\
\mathbf{S}_{\mathrm{w}} & =-\mathbf{0 . 5 2 9 * W}+95.31
\end{aligned}
$$

- You may use this equation or generate your own by doing the Time Laps Activity. Enter this equation into the TI 73 Explorer calculator . Y $=\square 520 x+95031$ ENTER

Use Professor Pi's Data

Then analyze your own data. Your data may be significantly different because you are running a different vehicle on different surfaces, using different weights and traveling different distances. These are the kinds of problems faced by race teams each time they change tracks, so they collect data pertinent to each track on which they race.

Your screen should look like this:

If you substitute a car weight for x and solve the equation, you will get the speed you can expect from that car. $\mathrm{Y}=$ speed.
F10ti Fiotz F1ots
ソ1日-.529 $8+95.31$
$\because \mathrm{V}=$
V3=
$V_{4}=$

Visit the engineers and educators of Ten80 Education at www.ten80education.com 1080 Education Inc.* Saratoga Springs, NY* info@ten80education.com * toll free 877-math2go

The Science of Racing Newton Knew

What do you know and what do you need to know?

From the data collected you know the weights of each vehicle and the total time it took to run 240 inches. From previous data collection, you have an equation --a math model-- for the relationship between weight and speed for these vehicles. From the table and/or graph you can find the top speed of each weighted vehicle.

11. Graph Speed with respect to eight to find the predicted Top Speed of vehicles you have not yet tested.

- Clear all lists 2nd [MEM] 6 DONEENTER
- Stats Plot should be OFF. 2nd[[PLOT] Select OFF ENTER
- Adjust Window value WINDOW
$x \min =-0 \quad x \max =100 \quad Y \min =-0 \quad Y \max =100$
- GRAPH to view the graph of the equation you entered. Speed is on the Y axis and Weight is on the X axis.
o You may use the trace button on the graph, GRAPH TRACE to scroll along the X axis until you locate ~ 30 and note the corresponding Y value of ~ 80.
- \quad The calculator has created a table [TABLE] of weights in x and the top speeds for that weight of car in the Y column.
o You can check there to find the 30 ounce car and its top speed of 79.44.
- Following these steps, complete the data table with speeds for each weight car.

Weight (W)	Average Time $\left(t_{f}\right)$	Average top Speeds $\left(S_{w}\right)$	t_{a}	d
28.9 ounces	3.84 seconds	79.44 in/sec		240 in
45.5 ounces				240 in
66.6 ounces				240 in

Visit the engineers and educators of Ten80 Education at www.ten80education.com 1080 Education Inc.* Saratoga Springs, NY* info@ten80education.com * toll free 877-math2go

The Science of Racing Newton Knew

Data Analysis: Use Professor Pi's Data

What do you know and what do you need to know?

You know the weights, final times, top speeds and distance. You still do not know how much of the total time was used to accelerate the vehicle up to its top speed. That is the distance represented by the triangle on the Speed-Time graph. This time of acceleration can now be calculated.

You do not yet know the shape of the triangular part of this curve.

How fast did the car arrive at its top speed?

Read Background Article, "Acceleration".

VARIABLES	
S_{w}	Top Speed of a vehicle that weighs W ounces
t_{a}	time to accelerate to constant speed for S_{w} vehicle.
t_{F}	time to Finish for S_{w} vehicle
d	distance

12. Calculate the time of acceleration.

- The total area of the two parts of the graph in Professor Pi's drawing equals the distance, d. The area of the triangular part is $1 / 2$ bh or:

$$
\frac{1}{2}\left(t_{a}\right)\left(S_{w}\right)
$$

- And the total area of both the triangle and the rectangle is:

$$
\frac{1}{2}\left(t_{a}\right)\left(S_{w}\right)+\left(S_{w}\right) *\left(t_{F}-t_{a}\right)=d
$$

- Using a bit of algebra to rearrange terms we can solve for ta, the only part of this equation we don't know: (d) $=240$ inches;
$\mathrm{S}_{\mathrm{w}}=79.5$ inches/second;
$\mathrm{t}_{\mathrm{F}}=3.84$ seconds

$$
\begin{aligned}
& \text { n't know: } \\
& t_{a}=2 *\left(t_{F}-\frac{d}{S_{w}}\right) \rightarrow
\end{aligned}
$$

Therefore for 1.64 of the total 3.84 seconds of the run for this car, the car was accelerating from 0 to 79.5 inches per sec . The rest of the run, 2.2 seconds, was made at top speed. $\quad \mathbf{t}_{\mathbf{a}}$, the time for acceleration, is 1.64 seconds

Visit the engineers and educators of Ten80 Education at www.ten80education.com 1080 Education Inc.* Saratoga Springs, NY* info@ten80education.com * toll free 877-math2go

Ohe Science of Racing Newton Knew

What do you know and what do you need to know?

You know the distance, weights, final times, time required to accelerate this mass (weight) up to top speed and top speeds. You still do not know the rate of acceleration. How many inches per second was the speed increasing each second? This can now be calculated.

Sample Data Set

13. Calculate the Rate of Acceleration

- The acceleration rate is the speed obtained, S_{w} or 79.5 inches/sec, divided by the time to accelerate, 1.642 seconds; or $a=79.4$ inches / second / 1.642 seconds
- Return to the Home screen 2nd MODE CLEAR 79 $94 \div 10642$ ENTER
- The rate of acceleration is ~ 48 inches/second/second also written as $48 \mathrm{in} / \mathrm{sec}^{2}$

Now you can complete the Professor's Data Chart for his 28.9 ounce car and prepare to collect your own data on your own vehicle. The Professor was curious about whether F=ma really explained his data, so he completed two more runs with heavier cars and used all three data points to find out if mass times acceleration really is a constant number.

Weight (W)	Average Time ($\left.t_{f}\right)$	Average Speeds $\left(S_{w}\right)$	d	t_{a}	Rate of acceleration
28.9 ounces	3.84 seconds	79.44 in/sec	240 in	1.64 sec.	48.36 in/sec ${ }^{2}$

Is m*a always the same for a given force? The force in this case is the energy output of the motor driving the radio controlled car. Take a look at what he found.

Visit the engineers and educators of Ten80 Education at www.ten80education.com 1080 Education Inc.* Saratoga Springs, NY* info@ten80education.com * toll free 877-math2go

O\% Newton Knew

Data Analysis: Use Professor Pi's Data

14. Is mass \times acceleration a constant number for a

 given force? Graph Acceleration and test Newton's theory of $\mathrm{F}=\mathrm{ma}$ (force $=$ mass \times acceleration)- When Professor Pi completed two more runs his data looked like this. In this table $\mathrm{X}=$ Weight, (note that Weight $=\mathrm{m}^{\star} \mathrm{g}$, in ounces); and $\mathrm{Y}=$ acceleration in in/sec2.
- Essential question: what story (theory, hypothesis, mathematical model) would explain the observed data?
- Use graphs to look for patterns in the data. The one that

X	Y
Weight (W) is on the X axis	Rate of acceleration is on the Y Axis
28.9 ounces	48.36 in/sec ${ }^{2}$
45.5 ounces	30.94 in/sec
66.4 ounces	22.13 in/sec

- Use Lists to multiply *weight (m*g) by acceleration to see if this product is a constant as Newton predicted.
- Clear (or Store) all lists 2nd][MEM] [6] ENTER
- Create three lists from your data table
o LIST
o Enter 3 weights ($\mathrm{m}^{*} \mathrm{~g}$) in L1
o Enter 3 Acceleration rates (F / m) in L2
o Enter formula for weight times acceleration in L3
o Highlight L3 [ENTER 2nd][STAT] \boxtimes
2nd [STAT] ENTER ENTER
o Your lists have weight in L1, acceleration rate in L2, and weight x acceleration in L3
o Notice that the products in L3 are nearly the same number. (or at least reasonably close given the unsophisticated nature of this experiment - the range of the data is only 4% of the average, 1441.6).

The genius of Newton is that from precisely such a data set he put together the theory of: $F=$ ma, or for a constant force (in this case the motor driving the RC car) the acceleration, a, is: $a=F / m$.

[^0]
The Science of Qacing

Data Analysis: Use Professor Pi's Data Summary Activity

15. Graphs are mathematical models.

It is a model of what you observed just as the radio controlled car models a real car. Scientists and engineers work with mathematical models to make them as accurate as possible.

Force= mass \times acceleration
In your Science of Racing Log, create a series of hand drawn graphs and/or diagrams representing your understanding of $\mathrm{F}=\mathrm{ma}$.

The smaller car (less massive) moved as far as the larger car in the same amount of time.

A smaller force is needed to move the smaller car the same distance as the larger car in the same amount of time.

O\%he Science of Qacing

Activity 3: Newton Knew: Newton Knew
Additional Assessment:

Assessment

- What is acceleration?
- How can you use a Speed-Time graph to determine distance traveled?
- What is the relationship between Speed, time and distance?
- What is your understanding of $\mathrm{F}=\mathrm{ma}$?
- How is acceleration calculated? What are the units of speed and time?

Assessment

- What is acceleration?

See Vocabulary

- How can you use a Speed-Time graph to determine distance traveled?

Divide the area under the graph lines into sections for which you can find the area.

- What is the relationship between Speed, time and distance?

Speed equals distance divided by time.

- What is your understanding of $\mathrm{F}=\mathrm{ma}$?
mass times acceleration is a constant for a given force. If mass decreases, acceleration increases. If acceleration increases, mass decreases.
- How is acceleration calculated? What are the units of speed and time?
a = change in speed divided by change in time.

Vocabulary:

Speed

Distance traveled in some amount of time or speed $=d / t$

Velocity

Speed in some direction.

Average speed

 describes speed of motion when speed is changing.
Instantaneous

speed is speed at a given point of time.

Constant Speed describes motion in which speed is not changing.

Constant Velocity describes motion in which neither speed or direction are changing.

Acceleration

is a change in speed or direction.

The Science of Racing Newton Knew

Transparency _ Newton Knew _3A

Use Professor Pi's Data: Find Acceleration

- \quad Professor Pi planned to make three test runs with $1 / 16$ scale radio controlled cars that weighed 30, 45 and 60 ounces. Before each run, the car's exact weight was recorded. The distance of each run was 240 inches.
- Professor Pi collected data from use scale model RC cars; the data used for illustration is taken from 1/16th scale RC cars used in the 1080 Education kits.

Notes:

Weight (W)	Average Time (t_{f})	Average Speed $\left(S_{w}\right)$	d	t_{a}	Rate of acceleration
28.9 ounces	3.84 seconds	in/sec	240 in	___ sec.	_ in/sec ${ }^{2}$

I'he Science of Racing Newton Knew

Solutions

Weight (W)	Average Time ($\left.\mathrm{t}_{\mathrm{f}}\right)$	Average Speeds $\left(\mathrm{S}_{\mathrm{w})}\right.$	d	t_{a}	Rate of acceleration
28.9 ounces	3.84 seconds	$79.44 \mathrm{in} / \mathrm{sec}$	240 in	1.64 sec.	$48.36 \mathrm{in} / \mathrm{sec}^{2}$
45.5	3.37	71.2	240 in	30.94	30.94
66.4	3.99	60.19	240 in	30.94	22.13

Use Professor Pi's Data: Find Acceleration

Professor Pi planned to make three test runs with $1 / 16$ scale radio controlled cars that weighed 30,45 and 60 ounces. Before each run, the car's exact weight was recorded. The distance of each run was 240 inches.
-Professor Pi collected data from use scale model RC cars; the data used for illustration is taken from 1/16th scale RC cars used in the 1080
Education kits.

The Science of Racing Newton Knew

Newton Knew Acceleration: Background

This is a classic problem in physical science: a force applied to a real object (one that has mass) will cause the object to accelerate. In the case of a free falling object in air, the object continues to accelerate until it reaches a speed where the drag due to air friction equals the downward pull of gravity.

At this point the forces are balanced, i.e., sum is zero, and acceleration goes to zero, but the object continues at a constant speed: its terminal velocity (the most critical parameter describing the effectiveness of a parachute).

While this idea of a free falling object is difficult to examine in the classroom this activity illustrates the same principles.

Visit the engineers and educators of Ten80 Education at www.ten80education.com 1080 Education Inc.* Saratoga Springs, NY* info@ten80education.com * toll free 877-math2go

Ohe Science of Racing Newton Knew

Newton Knew Acceleration: Background

- One would expect that as the vehicle gets heavier, having a greater mass, it will accelerate more slowly.

- In this sketch, the maximum speed $\left(\mathrm{S}_{2 \mathrm{w}}\right)$ of the heavier vehicle is less (it is slower) than for the lighter vehicle (S_{w}).
- This concept is the essence of Newton's Second Law. For a given force, $\mathrm{F}=\mathrm{ma}$:
- The acceleration of the vehicle will be inversely
- This is how Newton originally phrased this concept:
for a given force applied to an object, its mass and acceleration will be inversely related;
- or mass multiplied by acceleration equals the force, F, defined as a constant.
- In this experiment, i.e., $F=m$ a. F will represent the maximum push the electric motor in the RC car can deliver.

> proportional to its mass.

VARIABLES

S_{w}	Top Speed of a lighter vehicle that weighs W ounces
t_{a}	time to accelerate to constant speed for lighter S_{w} vehicle.
t_{F}	time to Finish for lighter S_{w} vehicle
S_{2}	Top Speed of a heavier vehicle w
$\mathrm{t}_{2 \mathrm{a}}$	time to accelerate to constant speed for heavier $\mathrm{S}_{2 \mathrm{w}}$ vehicle
d	$\mathrm{t}_{2 \mathrm{~F}}$ distance time to Finish for heavier $\mathrm{S}_{2 \mathrm{w}}$ vehicle

Science of Racing Series

Correlations to National Science Standards
Activities 01-06

PROGRAM STANDARD C:
Mathematics is important in all aspects of scientific inquiry.
The science program should be coordinated with the mathematics program to enhance student use and understanding of mathematics in the study of science and to improve student understanding of mathematics.

PROGRAM STANDARD B:
Properties \& changes of properties in matter, Motions and forces, Transfer of energy

ACTIVITIES

CONTENT STANDARD D:
Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.

CONTENT STANDARD G:

The introduction of historical examples will help students see the scientific enterprise as more philosophical, social, and human. Middle-school students can thereby develop a better understanding of scientific inquiry and the interactions between science and society.

Visit the engineers and educators of Ten80 Education at www.ten80education.com 1080 Education Inc.* Saratoga Springs, NY* info@ten80education.com * toll free 877-math2go

[^0]: *Note that in this activity, we are examining F=ma using weight and mass interchangeably because on earth the two are directly proportional.
 Visit the engineers and educators of Ten80 Education at www.ten80education.com
 1080 Education Inc.* Saratoga Springs, NY* info@ten80education.com * toll free 877-math2go

