Angles in Quadrilaterals

ACMMG202

$\begin{array}{llll}7 & 8 & 9 & 10\end{array}$

Answers \&

Teacher Notes

TI-Nspire

Navigator

Student

50 min

Objective

Establish properties of quadrilaterals using congruent triangles and angle properties, and solve related numerical problems using reasoning.

Equipment

For this activity you will need:

- TI-Nspire
- TI-Nspire file: "Angles in Quadrilaterals" (tns)
- TI-Navigator system (Optional)

When using the optional TI-Navigator system, answers in RED are corrected automatically.

Problem 1 - Properties of Rhombi

You will begin this activity by looking at angle properties of rhombi. On page 1.3, you are given rhombus READ and the measure of angles R, E, A, and D.

Question: 1.

Move point E to four different positions and collect the measures of R, E, A, and D and record your measurements in the table below.

Position	R	E	A	D
1	$\angle \mathrm{DRE}=\angle \mathrm{DAE}$	$\angle A E R=\angle A D R$	$\angle \mathrm{DAE}=\angle \mathrm{DRE}$	$\angle A D R=\angle A E R$
2	Individual answers will vary but follow the equality pairs above. Note also that $\angle \mathrm{DRE}+\angle \mathrm{REA}=180^{\circ}$ and $\angle \mathrm{REA}+\angle E A D=180^{\circ}$			
3				
4				

Question: 2.

Consecutive angles of a rhombus are supplementary.

Question: 3.

Opposite angles of a rhombus are congruent.

[^0]Next, you will look at the properties of the angles created by the diagonals of a rhombi. On page 1.7, you are given rhombus CARD and the measure of angles CSA, ASR, RSD, and DSC.

Question: 4.
Move point C to four different positions. Angles formed by the intersection of the two diagonals of a rhombus are right angles $\left(90^{\circ}\right)$.

On page 1.10, you are given rhombus RHOM and the measure of all angles created by the diagonals of the rhombus.

Question: 5.
The diagonals of a rhombus bisect the vertices.

Problem 2 - Properties of Kites

You will begin this problem by looking at angle properties of kites. You are given kite KING and the measure of angles K, I, N, and G.

Question: 6.
Move point I to two different positions and point K to two different positions and collect the measures of K, I, N, and G and record your measurements in the table below.

Position	\boldsymbol{K}	\boldsymbol{I}	\boldsymbol{N}	\boldsymbol{G}
$\mathbf{1}$	$0^{\circ}<\angle \mathrm{GKI} \angle 180^{\circ}$	$\angle \mathrm{KGN}=\angle \mathrm{KIN}$	$0^{\circ}<\angle \mathrm{GKI}<180^{\circ}$	$\angle \mathrm{KGN}=\angle \mathrm{KIN}$
$\mathbf{2}$				
$\mathbf{3}$				
$\mathbf{4}$				

Question: 7.

What do you notice about the opposite angles of a kite?
One pair of opposite angles are congruent (equal).
Next, you will look at the properties of the angles created by the diagonals of a kite. On page 2.5, you are given kite BLUE and the measure of angles BSL, LSU, USE, and ESB.

Question: 8.
Move point L to four different positions. Angles formed by the intersection of the two diagonals of a kite are right angles $\left(90^{\circ}\right)$.

On page 2.8, you are given rhombi $K I T E$ and the measure of all angles created by the diagonals of the rhombus.

Question: 9.

Move point K to four different positions. What do you notice about the angles created by the diagonals of a kite? The non-congruent angles are bisected by the diagonal.

Problem 3 - Properties of Trapezoids

In this problem, you will look at angle properties of trapezoids. You are given trapezoid TRAP and the measure of angles T, R, A, and P.

Question: 10.
Move point R to four different positions and collect the measures of T, R, A, and P onto the table below.

Position	\boldsymbol{T}	\boldsymbol{R}	\boldsymbol{A}	\boldsymbol{P}
$\mathbf{1}$	$\angle \mathrm{RTP}+\angle \mathrm{ART}$ $=180^{\circ}$	$\angle \mathrm{RTP}+\angle \mathrm{ART}$ $=180^{\circ}$	$\angle \mathrm{RAP}+\angle \mathrm{APT}$ $=180^{\circ}$	$\angle \mathrm{RAP}+\angle \mathrm{APT}$ $=180^{\circ}$
$\mathbf{2}$				
$\mathbf{3}$				
$\mathbf{4}$				

Question: 11.
What do you notice about the angles of a trapezoid?
Angles pairs formed on each of the parallel sides are supplementary.

Problem 4 - Beyond Observation (Extension)

Students in year 8 can be extended by providing opportunities for simple proofs such as: "Formulate proofs involving triangle congruency and angles properties" - ACMMG243 [Year 10]. Accessing these types of questions provides students an opportunity to demonstrate some skills above the expected level.
Parallelogram:
"A quadrilateral with pairs of opposite sides parallel".
Parallelograms have many properties that are a consequence of this definition. In problem 4 a parallelogram has been constructed. On page 4.1 the angle properties are explored through a series of steps. Follow these steps then answer the questions below.
Question: 12.
Name and describe the relationship between each angle pair.
a)

Corresponding angles
$\angle E A X=\angle R D X$
d)
b)

Supplementary angles
$\angle E A X+\angle E A D=180^{\circ}$
e)
c)

Supplementary angles

$$
\angle \mathrm{EAX}+\angle \mathrm{RDX}=180^{\circ}
$$

The interactive diagram on page 4.2 provides guided steps, to help prove that opposite sides of a parallelogram are equal in length.
Question: 13.
Use the interactive diagram to help formulate a proof to show that the opposite sides of a parallelogram are equal.
$R E$ and $D E$ are parallel
$\angle A R E=\angle R A D$
$\angle \mathrm{DRA}=\angle \mathrm{EAR}$
RA is common side
$\triangle A E R \equiv \triangle A D R$
Side ER = Side AD
Side $D R=$ Side $A E$

Parallelogram
Alternate angles (RA is transversal)
Alternate angles (RA is transversal)

Congruent triangles ASA
Congruent triangles
Congruent triangles

Therefore opposite sides of a parallelogram are equal.

[^0]: (C) Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

