\qquad
\qquad

In this lesson，you will investigate the perimeters and areas of triangles that have been rotated in different ways． Open the document：Rotations．tns．
It is important that the Rotations Tour be done before any
Rotations lessons．

Move to page 1．3．（ Δ ctrl two times）
On the handheld，press and attrl do navigate through the pages of the lesson．
（On the $\mathrm{iPad}^{\circledR}$ ，select the page thumbnail in the page sorter panel．）
1．Press menu to open the menu．
（On the iPad ${ }^{\circledR}$ ，tap on the wrench icon
 to open the menu．）
Press 1 （1：Templates）， 3 （3：Perimeters \＆Areas）．

2．Rotate $\triangle \mathrm{ABC} 45^{\circ}$ about point P （click on or press © Q° ）．
a．Record the Original perimeters（first measures displayed）in the appropriate places of the Rotate 45° section in the table below．
b．Investigate and mentally make note of the perimeters by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\mathbb{A}, \mathbf{B}, \mathbf{C})$ to create different shaped triangles．Record a set of data observed in row＂Figure 1＂in the following table．

Rotate 45°	Perimeter $\triangle A B C$	Perimeter $\Delta A^{\prime} B^{\prime} C^{\prime}$	Rotate 60°	Perimeter $\triangle A B C$	Perimeter $\Delta A^{\prime} B^{\prime} C^{\prime}$
Original			Original		
Figure 1			Figure 1		

c．Reset the page．Press
Change the angle of rotation to 60° ：click on $6^{\circ} 45^{\circ} \checkmark$ or press 国 to open the menu，and press the space bar（ \square ）to select that measure and to close the menu．

Click on \wp or press \square to rotate $\triangle \mathrm{ABC} 60^{\circ}$ about point P.
Record the Original perimeters in the appropriate places of the Rotate 60° section in the previous table.
d. Investigate and mentally make note of the perimeters by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\mathbb{A}, \mathbf{B}, \mathbf{C})$ to create different shaped triangles. Record a set of data observed in row "Figure 1" in the previous table.
e. Reset the page. Press Reset (ctri del).

Repeat what was done in parts a-d, but with each person in the group choosing a different rotation. Each person in the group should choose one from the following:
i) Rotate $\triangle \mathrm{ABC} 30^{\circ}$ about point P.
iii) Rotate $\triangle \mathrm{ABC}-60^{\circ}$ about point P.
ii) Rotate $\triangle \mathrm{ABC} 90^{\circ}$ about point P.
iv) Rotate $\triangle \mathrm{ABC}-45^{\circ}$ about point P .
(Note: to change the angle of rotation, click on $6^{\circ} 45^{\circ} \checkmark$ or press 国 to open the menu, and press the space bar (\square) to select that measure and to close the menu.)

Click on or press Q to rotate $\triangle A B C$ about point P.
Record the Original perimeters in the appropriate places in the following table.

Circle: i ii iii iv	Perimeter $\triangle A B C$	Perimeter $\Delta A^{\prime} B^{\prime} C^{\prime}$
Original		
Figure 1		

f. Investigate and mentally make note of the perimeters by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\mathbb{A}, \boldsymbol{B}, \mathrm{C})$ to create different shaped triangles. Record a set of data observed in row" Figure 1" in the previous table.
g. Many different triangles were rotated in several different directions.

Make a conjecture about the perimeters of rotated triangles.
A conjecture is an opinion or conclusion based upon what is observed.
\qquad
h. Based on explorations of rotated triangles in previous lessons, explain why this conjecture is true.
3. Do a similar exploration about the areas of rotated triangles in several directions.
a. Reset the page. Press Reset (ctrl dell).

Change the angle of rotation to 60° : click on $6^{\circ} 45^{\circ} \vee$ or press to open the menu, and press the space bar ($\boxed{\square}$) to select that measure and to close the menu.
Click on or press $⿴ 囗+$ to rotate $\triangle \mathrm{ABC} 60^{\circ}$ about point P.
Click on Next > or press \square to explore the areas of the triangles.

Record the Original areas (first measures displayed) in the appropriate places of the
Rotate 60° section in the table below.

Rotate 60					
	Area	Area	Rotate -45	Area	
$\triangle A B C$	$\Delta A^{\prime} B^{\prime} C^{\prime}$		Area		
Original			Original		$\Delta A^{\prime} B^{\prime} C^{\prime}$
Figure 1			Figure 1		

b. Investigate and mentally make note of the areas by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\mathbb{A}, \mathrm{B}, \mathbf{C})$ to create different shaped triangles. Record a set of data observed in row "Figure 1" in the previous table.
c. Reset the page. Press Reset (atrl dell).

Change the angle of rotation to -45° : Click on ${\zeta^{\circ}}^{\circ} 45^{\circ} \vee$ or press to open the menu, and press the space bar (\square) to select that measure and to close the menu.
Click on or press \mathbb{Q} to rotate $\triangle \mathrm{ABC}-45^{\circ}$ about point P.

Click on Next > or press \square to explore the areas of the triangles.

Record the Original areas in the appropriate places of the Rotate -45° section in the previous table.
d. Investigate and mentally make note of the areas by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\mathbb{A}, \mathrm{B}, \mathbb{C})$ to create different shaped triangles.
Record a set of data observed in row "Figure 1" in the previous table.
\qquad
\qquad
e. Reset the page. Press

Reset (ctrid del).
Repeat what was done in parts a-d, but each person in the group choosing a different rotation. Record the Original areas in the appropriate place in the following table. Each person in the group should choose one from the following:
i) Rotate $\triangle \mathrm{ABC} 30^{\circ}$ about point P.
iii) Rotate $\triangle \mathrm{ABC}-90^{\circ}$ about point P.
ii) Rotate $\triangle A B C 90^{\circ}$ about point P.
iv) Rotate $\triangle \mathrm{ABC}-60^{\circ}$ about point P .

Click on or press Q to rotate $\triangle A B C$ about point P.
Click on Next > or press \square to explore the areas of the triangles.

Record the Original areas in the appropriate place in the following table.

Circle: i ii iii iv	Area	Area
	$\triangle A B C$	$\Delta A^{\prime} B^{\prime} C^{\prime}$
Original		
Figure 1		

f. Investigate and mentally make note of the areas by grabbing and moving each of the three vertices of $\triangle A B C(\mathbb{A}, B,(\mathbb{C})$ to create different shaped triangles. Record a set of data observed in row "Figure 1" in the previous table.
g. Many different triangles were rotated in several different directions.

Make a conjecture about the areas of rotated triangles.
A conjecture is an opinion or conclusion based upon what is observed.
h. Based on explorations of rotated triangles in previous lessons, explain why this conjecture is true.
4. $\triangle J K L$ is rotated 120° about a point. The perimeter of $\triangle J K L$ is 40 cm and its area is 60 sq cm .
a. What is the perimeter of $\Delta J^{\prime} K^{\prime} L^{\prime}$? \qquad
b. What is the area of $\Delta J^{\prime} K^{\prime} L^{\prime}$? \qquad

